掌纹纹线特征是掌纹最有效的特征。由于在采集掌纹时不可避免地会产生尺度不一致、细微的旋转或平移等问题,使得准确地提取以及描述纹线特征成为掌纹识别的一大难点。针对这一问题,提出了一种融合水平梯度与局部信息强度的掌纹识别算法(Horizontal Gradient-Local Information Intensity,HG-LII)。首先,使用不同的均值滤波模板消除细小、不规则、不稳定的掌纹纹线特征,对处理后的图像使用水平梯度算子得到水平方向的梯度图像,并进行二值化;其次使用分块思想计算掌纹纹线的信息强度,并将其作为特征向量;最后采用卡方距离进行匹配,判断掌纹所属类别。在PolyU掌纹库上的实验结果表明,该算法识别率达到99.89%,与传统的提取纹线算法相比,识别率有明显的提高,表明了该算法的有效性。
为了避免单个滤波器在收敛速度与稳态误差上相互制约,从而导致系统性能降低的问题,本文采用凸组合最小均方算法(Combined Least Mean Square,CLMS),将快速滤波器和慢速滤波器并联使用,同时为进一步改善CLMS算法的性能,对已有的变步长凸组合最小均方算法(Variable Step-size Convex Combination of LMS,VSCLMS)做出改进,提出了一种新的VSCLMS算法.在该算法中,对快速滤波器选用以最小均方权值偏差(Minimization of Mean Square Weight Error,MMSWE)为准则的按步分析的变步长滤波器;对慢速滤波器采用以稳态最小均方误差(Least Mean Square,LMS)为准则的固定步长滤波器.通过理论分析与仿真实验表明,该算法能够在噪声、时变以及非平稳的环境下保持较好的随动性能,且在各个阶段均保持良好的收敛性,与传统的CLMS、VSCLMS算法相比,不仅具有更快的收敛速度,而且拥有稳定的均方性能和较优的跟踪性能,为自适应滤波算法的研究提供了一条可行途径.