利用室内人工降雨试验研究降雨强度和坡度对塿土水分入渗状况的影响及其作用机理,并用数学方法对土壤入渗率与累积入渗量随时间变化过程进行数学模拟。试验结果表明:雨强对降雨入渗率及累积入渗量有显著影响。雨强在20~90 mm h-1之间,雨强越大,塿土初始入渗率越高,达到稳定的时间越短,土壤的稳定入渗率由于主要受制于土壤特性,因而各降雨强度间差异不显著;累积入渗量变化表现为随降雨强度增大而减少;坡度对土壤入渗率及累积入渗量基本无影响。运用数学模型对土壤入渗率及累积入渗量的变化过程进行模拟,结果表明,Kostiakov经验模型与自回归移动平均模型(ARIMA)两种模型均可用于模拟土壤入渗性能的变化过程,拟合精度均较高。
[Objective] The aim was to study the effect of salt solution on characteristics of soil infiltration, and to provide references for the further studies on the effect of water quality on soil infiltration characteristics and its mechanism. [Method] With the NaCl, CaCl2 solutions as the main test materials, the effect of different water quality and salt solution concentration on soil infiltration was studied under one-dimensional vertical ponded water infiltration at laboratory. [Result] The solution concentration could affect the infiltration performance. The trends of the infiltration rates, cumulative infiltrations and wetting front migration distances were all 50 mg/L 100 mg/L 10 mg/L. At the same concentration, the effect of NaCl solution on soil infiltration characteristics was more significant than CaCl2 solution: in the same time, cumulative infiltration and wetting front migration distance of NaCl solution were greater than CaCl2 solution; compared with NaCl solution, CaCl2 solution took longer time to infiltrate the same amount of water. The dynamic changes of infiltration rate, wetting front and cumulative infiltration were well fitted to the Philip model. [Conclusion] This study only conducted indoor experiment to the infiltration of salt solutions, involving in low concentration and small range. Although it provided some references for the study on the effect of water quality on soil infiltration characteristics and its mechanism, studies in larger areas and with bigger concentrations are demanding.