随着大数据应用的涌现,计算机系统需要更大容量的内存以满足大数据处理的高时效性需求.新型非易失性存储器(non-volatile memory,NVM)结合传统动态随机存储器(dynamic random access memory,DRAM)组成的混合内存系统具有内存容量大、功耗低的优势,因而得到了广泛关注.大数据应用同时也面临着旁路转换缓冲器(translation lookaside buffer,TLB)缺失率过高的性能瓶颈.大页可以有效降低TLB缺失率,然而,在混合内存中支持大页面临着大页迁移开销过大的问题.因此,设计了一种支持大页和大容量缓存的层次化混合内存系统:DRAM和NVM分别使用4KB和2MB粒度的页面分别进行管理,同时在DRAM和NVM之间实现直接映射.设计了基于访存频率的DRAM缓存数据过滤机制,减轻了带宽压力.提出了基于内存实时信息的动态热度阈值调整策略,灵活适应应用访存特征的变化.实验显示:与使用大页的全NVM内存系统和缓存热页(caching hot page,CHOP)系统相比平均有69.9%和15.2%的性能提升,而与使用大页的全DRAM内存系统相比平均只有8.8%的性能差距.