Let (H, a) be a monoidal Hom-bialgebra and (B,p) be a left (H, a)-Hom-comodule coalgebra. The new monoidal Hom-algebra B#y H is constructed with a Hom-twisted product Ba[H] and a. B × H Hom-smash coproduct. Moreover, a sufficient and necessary condition for B#y / to be a monoidal Hom-bialgebra is given. In addition, let (H, a) be a Hom-σ- Hopf algebra with Hom-〇 --antipode SH, and a sufficient condition for this new monoidal Hom-bialgebra B#y H with the antipode S defined by S(b×h)=(1B×SH(a^-1)b(-1)))(SB(b(0))×1H to be a monoidal Hom-Hopf algebra is derived.
设H是一个双代数,B是带有H弱作用的代数,σ:H(?)H→B和τ:H(?)H→B都是k-双线性映射.首先我们给出了B_χ^(#_σ^τ)H成为双代数的充分必要条件,此双代数带有扭曲交叉积B#_σ~τH和冲余积B×H,其中B是H上的余模余代数.此双代数是由Radford首次在文献[8]中提出,后来Doi and Takeuchi又在文献[4]和[9]中进一步推广而得到的.然后我们对此双代数进行刻画并研究其基本性质.最后我们给出了此双代数成为Hopf代数的充分条件.