讨论了具有有界随机参数的随机Bonhoeffer-Van der Pol系统的随机混沌现象,并利用噪声对其进行控制.首先运用Chebyshev多项式逼近的方法,将随机Bonhoeffer-Van der Pol系统转化为等价的确定性系统,使原系统的随机混沌控制问题转换为等价的确定性系统的确定性混沌控制问题,继而可用Lyapunov指数指标来研究等价确定性系统的确定性混沌现象和控制问题.数值结果表明,随机Bonhoeffer-Van der Pol系统的随机混沌现象与相应的确定性Bonhoeffer-Van der Pol系统极为相似.利用噪声控制法可将混沌控制到周期轨道,但是在随机参数及其强度的影响下也呈现出一些特点.
讨论谐和激励作用下含有界随机参数的双势井Duffing-Van der pol系统的对称破裂分岔现象。首先用Chebyshev多项式逼近法将随机系统化成与其等价的确定性系统,然后通过等价确定性系统来探索随机Duffing-Van der pol系统的对称破裂分岔现象。数值模拟显示随机Duffing-Van der pol系统与确定性均值参数系统有着类似的对称破裂分岔行为,文中的主要数值结果表明Chebyshev多项式逼近法是研究非线性随机参数系统动力学问题的一种有效方法。
讨论简谐激励作用下含有界随机参数的双势阱Duffing-van der Pol系统的倍周期分岔现象.首先用Chebyshev多项式逼近法将随机Duffing-van der Pol系统化成与其等价的确定性系统,然后通过等价确定性系统来探索该系统的倍周期分岔现象.数值模拟显示随机Duffing-van der Pol系统与均值参数系统有着类似的倍周期分岔行为,同时指出,随机参数系统的倍周期分岔有其自身独有的特点.文中的主要数值结果表明Chebyshev多项式逼近法是研究非线性随机参数系统动力学问题的一种有效方法.