A sub circuit model for VDMOS is built according to its physical structure.Parameters and formulas describing the device are also derived from this model.Comparing to former results,this model avoids too many technical parameters and simplify the sub circuit efficiently.As a result of numeric computation,this simple model with clear physical conception demonstrates excellent agreements between measured and modeled response (DC error within 5%,AC error within 10%).Such a model is now available for circuit simulation and parameter extraction.
A new approach,gate-capacitance-shift (GCS) approach,is described for compact modeling.This approach is piecewise for various physical effects and comprises the gate-bias-dependent nature of corrections in the nanoscale regime.Additionally,an approximate-analytical solution to the quantum mechanical (QM) effects in polysilicon (poly)-gates is obtained based on the density gradient model.It is then combined with the GCS approach to develop a compact model for these effects.The model results tally well with numerical simulation.Both the model results and simulation results indicate that the QM effects in poly-gates of nanoscale MOSFETs are non-negligible and have an opposite influence on the device characteristics as the poly-depletion (PD) effects do.