Molecular dynamics simulations were carried out to study the configuration energy and radial distribution functions of mmonium dihydrogen phosphate solution at different temperatures. The dihydrogen phosphate ion was treated as a seven-site model and the ammonium ion was regarded as a five-site model, while a simple-point-charge model for water molecule. An unusually local particle number density fluctuation was observed in the system at saturation temperature. It can be found that the potential energy increases slowly with the temperature from 373 K to 404 K, which indicates that the ammonium dihydrogen phosphate has partly decomposed. The radial distribution function between the hydrogen atom of ammonium cation and the oxygen atom of dihydrogen phosphate ion at three different temperatures shows obvious difference, which indicates that the average H-bond number changes obviously with the temperature. The temperature has an influence on the combination between hydrogen atoms and phosphorus atoms of dihydrogen phosphate ion and there are much more growth units at saturated solutions.