The deformation behavior and mechanism of Ti2AlNb-based alloy were experimentally investigated at elevated temperatures. Firstly, the stress?strain relationships at different temperatures and strain rates were investigated via uniaxial tensile testing. Then, formability data, as determined by examining the deep drawing and bending abilities, were obtained through limiting draw ratio (LDR) and bending tests. Finally, metallographic experiments and fracture morphology investigations were conducted to examine the thermal deformation mechanism of the alloy. The results showed that as the temperature increased, the total elongation increased from 13.58% to 97.82% and the yield strength decreased from 788 to 80 MPa over the temperature range from 750 to 950 °C at a strain rate 0.001 s?1. When the temperature reached 950 °C, the strain rate was found to have a great influence on the deformation properties. The plastic formability of the sheet metal was significantly improved and a microstructuraltransformation of O toB2 andα2 occurred in this temperature region, revealing the deformation mechanism of its plasticity.
A rational parametric planar cubic H spline curve is defined by a set of control vertices in a plane and percentage factors of line segments between every two control vertices. Movement of any control vertex affects three curve segments. This paper is the succession and development of reference of Tang Yuehong. We analyze the geometric features like cusps and inflection points in the curve and calculate the cusps and inflection points, then give a necessary and sufficient condition to the inflection points in the curve when it is non degenerative, and finally show that the curves have no cusps in the interval (0,1). In many applications, it is desirable to analyze the parametric curves for undesirable features like cusps and inflection points