A novel MEMS inductor consisting of a planar single crystalline silicon spiral with a copper surface coating as the conductor is presented. Using a silicon-glass anodic bonding and deep etching formation-and-release process,a 40μm-thick silicon spiral is formed, which is suspended on a glass substrate to eliminate substrate loss. The surfaces of the silicon spiral are coated with highly conformal copper by electroless plating to reduce the resis- tive loss in the conductor,with thin nickel film plated on the surface of the copper layer for final surface passivation. The fabricated inductor exhibits a self-resonance frequency higher than 15GHz,with a quality factor of about 40 and an inductance of over 5nil at 11.3GHz. Simulations based on a compact equivalent circuit model of the inductor and parameter extraction using a characteristic-function approach are carried out,and good agreement with measurements is obtained.
我们利用0.18μm CM O S工艺设计了低噪声放大器。所有电感采用片上螺旋电感,全集成在单个芯片上,并实现片内50Ω匹配。本次电路设计分析采用ADS仿真软件,电源电压1V,工作电流8mA,增益为15.4dB,噪声系数2.7dB,线性度指标IIP 3为-0.6dB。结论是CM O S工艺在工艺和模型方面的改进,使得CM O S RF电路设计更为精确,可集成度更高。