数据流相似性查询广泛应用于智能家居、环境监测等领域.当前以LCSS(longest common subsequence)作为相似性测度函数的研究并不多.NAIVE算法使用基本动态规划方法计算测度函数值,通过该值与相似阈值的比较得到查询结果,对基于LCSS的数据流相似性查询问题进行研究.针对NAIVE算法必须在动态规划矩阵所有成员取值的计算完成后才能得到查询结果的缺点,提出了一种基于PS(possible solution)-CC(column critical)域优化策略的数据流相似性查询处理算法.该算法划定了每个窗口上动态规划矩阵的PS域和CC域,很好地利用了这2个域中成员所具有的性质和相似性查询的特点,无须获得测度函数的最终值便可得到查询结果,省略了很多矩阵成员的计算.实验部分证明了该算法的有效性,与同类算法相比,在处理具有更高精度结果要求的查询时效果更好.
针对当前关于数据流加权最大频繁项集WMFI(weighted maximal frequent itemsets)的研究无法有效地处理频繁阈值和加权频繁阈值不一致情况下WMFI的挖掘问题,提出了完全加权最大频繁项集FWM FI(full w eighted maximal frequent itemsets)的概念.为了减少naive算法在处理滑动窗口下完全加权最大频繁项集挖掘时存在的冗余运算,提出了FWMFI-SW(FWMFI mining based on sliding window over data stream)算法.所提出的算法通过基于频繁约束条件的优化策略减少了naive算法中M ax W优化策略的无效调用次数;采用编辑距离比率作为WMFP-SW-tree的重构判别函数,可以有效减少该树的重构次数.实验结果表明FWMFI-SW算法是有效的,且比naive算法更有时间优势.