您的位置: 专家智库 > >

韩轶

作品数:4 被引量:105H指数:4
供职机构:东北林业大学更多>>
发文基金:长江学者和创新团队发展计划国家科技支撑计划更多>>
相关领域:农业科学更多>>

文献类型

  • 4篇中文期刊文章

领域

  • 4篇农业科学

主题

  • 4篇土壤
  • 2篇土壤微生物
  • 2篇微生物
  • 2篇采伐
  • 1篇兴安落叶松
  • 1篇有机碳
  • 1篇有机碳密度
  • 1篇枝叶
  • 1篇森林采伐
  • 1篇森林土
  • 1篇森林土壤
  • 1篇生物量碳
  • 1篇树种
  • 1篇碳密度
  • 1篇土壤含水率
  • 1篇土壤呼吸
  • 1篇土壤微生物生...
  • 1篇土壤性质
  • 1篇土壤有机
  • 1篇土壤有机碳

机构

  • 4篇东北林业大学

作者

  • 4篇王传宽
  • 4篇韩轶
  • 1篇杜尧
  • 1篇王家骏

传媒

  • 2篇植物生态学报
  • 2篇生态学报

年份

  • 1篇2018
  • 1篇2017
  • 1篇2015
  • 1篇2014
4 条 记 录,以下是 1-4
排序方式:
树种对土壤有机碳密度的影响:5种温带树种同质园试验被引量:24
2015年
树种通过改变凋落物输入与周转及根系活动影响土壤的理化和生物学性质及固碳功能。合理选择树种是碳汇林业中一个亟待解决的理论和实践问题。为了减少林分特征和立地条件差异的影响,2004年在相同气候、土壤和经营历史的立地上建立了东北地区常见树种同质园,10年(2013–2014年)后测定了其中的3种阔叶树(白桦(Betula platyphylla)、胡桃楸(Juglans mandshurica)、水曲柳(Fraxinus mandshurica))和两种针叶树(落叶松(Larix gmelinii)、樟子松(Pinus sylvestris var.mongolica))人工纯林的土壤有机碳(SOC)及土壤容重、全氮、微生物生物量碳、微生物生物量氮、p H值等相关因子,旨在比较探索树种对SOC含量及其垂直分布的影响。结果表明:(1)树种显著影响0–40 cm土层SOC总密度(p<0.05)。其中,0–10 cm土层SOC密度变化范围为2.79–3.08 kg·m–2,表现为胡桃楸林>水曲柳林>白桦林>落叶松林>樟子松林;10–20 cm土层变化范围为1.56–2.19kg·m–2,表现为樟子松林>胡桃楸林>水曲柳林>白桦林>落叶松林;20–30 cm土层变化范围为1.17–2.10 kg·m–2,表现为白桦林、水曲柳林显著高于其他树种纯林;30–40 cm土层变化范围为0.84–1.43 kg·m–2,表现为白桦林显著高于其他树种纯林。(2)SOC密度垂直分布格局因树种和土层而异。胡桃楸林、落叶松林0–10 cm土层SOC密度占0–40 cm土层总密度的相对量显著高于其他树种纯林,白桦林20–40 cm土层的SOC密度相对量显著高于其他树种纯林,这说明不同层次SOC密度的主控因子因树种而异。(3)不同树种纯林SOC浓度、容重差异显著,且两者呈负相关。胡桃楸林、水曲柳林和落叶松林SOC密度与土壤微生物生物量、土壤p H值均呈正相关关系。5个树种纯林SOC密度均与全氮密度呈正相关关系。研究表明,树种通过改变土壤理化性质和微生物活动而显著影响SOC密度,不同树种SOC密度垂直变化格�
王薪琪王传宽韩轶
关键词:树种土壤性质土壤有机碳土壤微生物
干旱对兴安落叶松枝叶非结构性碳水化合物的影响被引量:45
2014年
降水格局的变化以及极端干旱的频繁发生是全球气候变化的重要特征之一。为了揭示干旱对树木碳代谢的影响,通过控雨试验研究兴安落叶松(Larix gmelinii Rupr.)枝叶的非结构性碳水化合物(NSC)及其组分(可溶性糖和淀粉)的浓度对降水减少的响应,探索枝叶NSC浓度与土壤含水率的关系。控雨试验包括减雨100%(100%RE)、减雨50%(50%RE)和对照(CK)3个处理;控雨时期为2012年生长季(6月至8月)。结果表明,叶NSC浓度对干旱处理的响应比枝更显著。控雨处理对枝叶总NSC浓度影响不显著(P>0.05),试验期间叶总NSC平均浓度变化在9.45—14.12 mg/g范围内;枝总NSC平均浓度变化在7.72—9.26 mg/g之间。然而,不同处理之间的叶片可溶性糖浓度差异显著。100%RE最高(8.98±0.31)mg/g、50%RE次之(8.45±0.13)mg/g、CK最低(7.73±0.32)mg/g。相反,叶淀粉浓度以CK最高(2.99±0.22)mg/g、50%RE次之(2.68±0.32)mg/g、100%RE最低(2.63±0.17)mg/g。叶可溶性糖与淀粉浓度的比值的大小顺序为:CK(2.27)<50%RE(2.51)<100%RE(3.70)。叶可溶性糖浓度、可溶性糖浓度和淀粉浓度的比值与土壤含水率呈显著的负相关关系(P<0.05),而叶淀粉浓度有随土壤含水率升高而增高趋势,但相关关系不显著(P>0.05)。叶NSC总浓度、枝NSC及其组分浓度与土壤含水率的关系均不显著(P>0.05)。研究表明,短期干旱对兴安落叶松树体内总NSC浓度的影响不显著,树木可以通过将淀粉转化成可溶性糖的方式维持其正常的呼吸作用等生理活动。
杜尧韩轶王传宽
关键词:可溶性糖土壤含水率
帽儿山不同林龄落叶阔叶林土壤微生物生物量及其季节动态被引量:22
2017年
土壤微生物在生态系统生物地球化学循环过程中扮演着重要角色,对于受到干扰后退化土壤的肥力恢复具有重要的意义,然而,采伐后次生林发展过程中土壤微生物生物量的动态尚不明确。在帽儿山森林生态站的落叶阔叶林中设置了一个由采伐后0年(采伐迹地)、10年、25年、56年的林分构成林龄系列样地,采用氯仿熏蒸浸提法,在生长季期间(4–10月)每月测定各林分土壤微生物生物量碳含量(C_(mic))、微生物生物量氮含量(N_(mic))、土壤可溶性有机碳含量(Cdis)、可溶性全氮含量(Ndis)、土壤含水率、温度等因子,以探索采伐干扰后不同林龄林分土壤微生物生物量的时间动态及其影响因子。结果表明:(1)不同林龄林分土壤微生物生物量生长季均值差异显著,C_(mic)表现为56年和采伐迹地显著高于25年和10年林分;N_(mic)表现为采伐迹地、56年显著高于10年林分,25年林分居中;C_(mic)/N_(mic)表现为56年、10年林分显著高于25年林分、采伐迹地。(2)采伐迹地微生物生物量季节变化格局与其他3个林龄林分的差异主要体现在生长季后期,前者表现为降低,而后者表现为升高或变化不明显;10年、25年、56年林分C_(mic)、N_(mic)季节变化格局的差异主要体现在生长季前期,变化幅度随林龄增长而降低;4个林龄林分C_(mic)/N_(mic)季节变化均表现为"W"形。(3)土壤微生物生物量的主要影响因子随林龄而变:随林龄增长,C_(mic)、N_(mic)的影响因子由土壤含水率(采伐迹地、10年生)逐渐转变为土壤可溶性养分含量(10年、25年、56年林分);采伐迹地C_(mic)/N_(mic)影响因子为土壤温度和Cdis,其他3个林龄林分则为Cdis/Ndis。这些结果说明:在采伐干扰后的次生林发展过程中,植被组成和土壤理化性质不断变化,提高了土壤微生物生物量,进而改善了土壤养分状况,显示出地上植被变化与地下微生物动态的密切联系。
王薪琪韩轶王传宽
关键词:采伐干扰微生物生物量碳温带森林
帽儿山不同年龄森林土壤呼吸速率的影响因子被引量:15
2018年
为探明东北温带森林恢复过程中土壤呼吸(R_S)的变化趋势及其影响因子,在帽儿山选取皆伐后天然更新恢复的4个年龄(1a、10a、25a和56a)林分进行了1年的野外原位测定。结果表明:(1)皆伐后天然更新恢复1年、10年、25年和56年林分的年R_S通量差异显著(P<0.05),分别为686.5、639.7、733.3、762.3g C m^(-2)a^(-1);其中生长季(5月─10月)和非生长季的R_S通量也存在显著差异,均呈现出随林龄增加先减后增的趋势。全年、生长季和非生长季R_S随林龄变化的变异系数分别为7.6%、6.3%和21.1%,表明非生长季R_S通量的变异性加大了全年R_S通量的差异。(2)4个年龄林分的Rs季节变化趋势相似,且其主控因子均随季节而变:6月─8月Rs与土壤含水率呈二次函数关系(R^2波动在56%─79%之间),其余时段则与土壤温度呈指数函数关系(R^2波动在85%─93%之间)。(3)不同年龄林分生长季R_S与0─20cm土层有机碳(SOC)密度呈正相关关系(R^2=0.434,P<0.05),而非生长季R_S与同期土壤5cm温度呈正相关关系(R^2=0.959,P<0.01)。本研究区森林皆伐导致R_S降低,随皆伐后森林恢复R_S不断增加,其主导驱动因子是SOC密度的增加和非生长季土壤温度的变化。
王家骏王传宽韩轶
关键词:年龄序列森林采伐土壤呼吸
共1页<1>
聚类工具0