锂电池荷电状态(State of Charge,SOC)估算是电池管理系统(Battery Management System,BMS)的关键,准确估算SOC对合理使用动力电池、推动电动汽车的发展有重要意义。为避免安时积分法对SOC估算造成随时间累积的误差,以及在驱动参数设置不科学的情况下,扩展卡尔曼启动阶段性能差等问题,提出融合GM(1,1)先验估计的扩展卡尔曼SOC估算策略。在初始阶段使用安时积分来估算SOC值作为GM(1,1)模型的原始数据序列,以GM(1,1)模型替代EKF算法中的先验估算,保证状态估算的优良启动性能以及加快收敛速度,结合实时观测值对先验状态进行修正,随着迭代次数增加,后验估算值逐步淘汰GM(1,1)模型原始数据序列中的值,使得估算值主要依赖于实施监测实时检测的修正。实验结果表明,该方法有效提高了SOC估算精度,其估计精度在2%内,为电池管理系统的搭建与锂电池组的均衡提供了判断依据。
针对放电条件下,航空锂电池的放电情况,考虑了电流及温度对极化参数的影响的电池模型。电池电荷状态(State of Charge,SOC)对于电池是十分重要的性能,为了精准估计航空锂电池的电池电荷状态(State of Charge,SOC),尝试使用无迹卡尔曼滤波(UKF)对航空锂电池的SOC进行估算,无迹卡尔曼滤波是一种新型的滤波估计算法。UKF以无损变换变换为基础,摒弃了对非线性函数进行线性化的传统做法,采用卡尔曼线性滤波框架,对于一步预测方程,使用无迹(UT)变换来处理均值和协方差的非线性传递,就成为UKF算法。UKF是对非线性函数的概率密度分布进行近似,用一系列确定样本来逼近状态的后验概率密度,而不是对非线性函数进行近似,不需要求导计算Jacobian矩阵。UKF没有线性化忽略高阶项,因此非线性分布统计量的计算精度较高。在simulink上建立航空锂电池的等效电路模型,进行仿真实验。仿真实验表明该算法SOC估算精度误差稳定在百分之五左右。