针对风电机组齿轮箱运行过程中故障样本缺乏、正常样本充裕的特点,提出基于增量代价敏感支持向量机(Incremental Cost-sensitive Support Vector Machine,ICSVM)的风电机组齿轮箱故障诊断方法。由于齿轮箱故障样本缺乏,建立以误分类代价最小化为目标的代价敏感支持向量机故障诊断模型;在增量训练代价敏感支持向量机阶段,利用KKT条件,以增量样本和初始样本训练增量代价敏感支持向量机。实验结果表明,该方法能有效地减少平均误分类代价和训练时间,提高齿轮箱故障识别率。
变转速工况下的滚动轴承故障振动信号具有多分量调制以及故障特征频率受到转频调制的特点,从而导致故障特征提取困难。对此,将局部均值分解(local mean decomposition,简称LMD)与阶次跟踪分析相结合,提出了一种变转速工况下的滚动轴承故障诊断方法。首先,采用阶次跟踪采样将时域滚动轴承故障振动信号转换到角域;然后,对角域信号进行LMD分解得到若干个乘积函数(product function,简称PF)分量;最后,对各个PF分量的瞬时幅值进行频谱分析,判断滚动轴承的故障部位和类型。通过对滚动轴承实验故障振动信号的分析,结果表明该方法能有效地应用于变转速工况下的滚动轴承故障诊断。
针对局部均值分解(Local Mean Decomposition,LMD)中乘积函数(ProductFunction,PF)分量的瞬时频率计算问题,引入了一种新的信号瞬时频率计算方法.该方法基于分段波形,先将信号分成若干个全波段(full wave),然后以一组递增的反正弦函数定义每个全波段的瞬时相位,进而得到信号的瞬时频率.由该方法得到的瞬时频率理论上是正的、稳定的并且能够确保信号局部特征信息的完整.应用该方法计算了仿真信号和实际齿轮故障振动信号的瞬时频率,并与其他方法求得的瞬时频率进行了对比.结果表明,本文方法非常适合求取信号的瞬时频率.