多端柔性直流输电(voltage sourced converter based multi-terminal high voltage direct current,VSC-MTDC)系统安全运行至少应满足N?1法则,即当一个换流站由于故障或检修退出运行时,剩余系统可以恢复功率平衡而继续稳定运行,且暂态过电压不会超过设备绝缘裕度。为了维持VSC-MTDC直流电压稳定及整个网络功率平衡的站间协调控制,提出一种改进直流电压下垂控制策略,同时引入一个公共直流参考电压,参与下垂控制换流站的功率调整。在PSCAD/EMTDC中建立基于模块化多电平换流器的三端VSC-MTDC仿真模型,在稳态和暂态运行工况下对所提直流电压控制策略进行仿真验证。结果表明,所提策略可抑制换流站交流侧故障引起的直流侧功率振荡,进行换流站退出运行后系统功率的紧急输送,提高了VSC-MTDC系统的运行稳定性。
不对称交流电网下的功率波动将引起模块化多电平换流器子模块能量的不平衡,进而影响模块化多电平变流器型高压直流输电(modular multilevel converter based HVDC,MMC-HVDC)的动态性能。基于不对称交流电网下MMC桥臂瞬时功率的分析,确定换流器内部子模块电容电压及桥臂环流的控制目标。在此基础上,提出一种基于子模块电容电压预估的最近电平调制和基于桥臂环流预估的直接环流控制,两者相结合的复合控制策略。不论交流系统对称与否,在所提出的控制策略下,均能保证换流器上下桥臂间,三相间以及总子模块电容电压的相对平衡,实现对基频及二倍频谐波环流的抑制。基于PSCAD/EMTDC,建立两端MMCHVDC仿真模型,分别在有功功率和直流电压控制站进行不对称交流电网的仿真验证。仿真结果表明,所提出的控制策略能够保证故障期间子模块电容电压平均值保持恒定,直流电压不会由于二倍频零序瞬时功率出现二倍频波动,系统故障穿越能力得以提升。