2025年1月24日
星期五
|
欢迎来到海南省图书馆•公共文化服务平台
登录
|
注册
|
进入后台
[
APP下载]
[
APP下载]
扫一扫,既下载
全民阅读
职业技能
专家智库
参考咨询
您的位置:
专家智库
>
>
张腊梅
作品数:
1
被引量:5
H指数:1
供职机构:
北京大学
更多>>
发文基金:
国家教育部博士点基金
国家自然科学基金
国家高技术研究发展计划
更多>>
相关领域:
自动化与计算机技术
更多>>
合作作者
黄威靖
北京大学信息科学技术学院高可信...
雷凯
北京大学信息工程学院
王腾蛟
北京大学信息科学技术学院高可信...
陈薇
北京大学信息科学技术学院高可信...
作品列表
供职机构
相关作者
所获基金
研究领域
题名
作者
机构
关键词
文摘
任意字段
作者
题名
机构
关键词
文摘
任意字段
在结果中检索
文献类型
1篇
中文期刊文章
领域
1篇
自动化与计算...
主题
1篇
主题
1篇
主题相关
1篇
转发
机构
1篇
北京大学
作者
1篇
陈薇
1篇
王腾蛟
1篇
雷凯
1篇
黄威靖
1篇
张腊梅
传媒
1篇
计算机研究与...
年份
1篇
2015
共
1
条 记 录,以下是 1-1
全选
清除
导出
排序方式:
相关度排序
被引量排序
时效排序
EMTM:微博中与主题相关的专家挖掘方法
被引量:5
2015年
目前,微博已成为人们获取信息、分享信息的最流行平台之一.经过长期的发展积累,微博中聚集了很多具有权威专业知识背景的专家,挖掘微博中与主题相关的专家有利于进一步地用户推荐、微博舆情分析等工作.在微博中,与某个主题相关的专家是指因具有可靠的与此主题相关的专业知识或技能而在此主题下具有高影响力的用户.挖掘高影响力的用户可以通过分析微博的转发数据来进行,然而由于微博中用户的转发行为分为"主题相关转发"和"跟随转发"2种,因此,因被转发概率高而具有高影响力的用户不一定是专家.EMTM(experts mining topic model)是一种基于主题模型的概率生成模型,通过区分微博用户的不同转发行为来挖掘微博中与主题相关的专家.模型采用Gibbs采样进行推理求解.在真实的新浪微博数据集上的对比实验表明EMTM能够有效地挖掘微博中与主题相关的专家.
张腊梅
黄威靖
陈薇
王腾蛟
雷凯
关键词:
主题
全选
清除
导出
共1页
<
1
>
聚类工具
0
执行
隐藏
清空
用户登录
用户反馈
标题:
*标题长度不超过50
邮箱:
*
反馈意见:
反馈意见字数长度不超过255
验证码:
看不清楚?点击换一张