倪超
- 作品数:4 被引量:151H指数:4
- 供职机构:计算机软件新技术国家重点实验室更多>>
- 发文基金:国家自然科学基金国家重点实验室开放基金国家建设高水平大学公派研究生项目更多>>
- 相关领域:自动化与计算机技术更多>>
- 静态软件缺陷预测方法研究被引量:123
- 2016年
- 静态软件缺陷预测是软件工程数据挖掘领域中的一个研究热点.通过分析软件代码或开发过程,设计出与软件缺陷相关的度量元;随后,通过挖掘软件历史仓库来创建缺陷预测数据集,旨在构建出缺陷预测模型,以预测出被测项目内的潜在缺陷程序模块,最终达到优化测试资源分配和提高软件产品质量的目的.对近些年来国内外学者在该研究领域取得的成果进行了系统的总结.首先,给出了研究框架并识别出了影响缺陷预测性能的3个重要影响因素:度量元的设定、缺陷预测模型的构建方法和缺陷预测数据集的相关问题;接着,依次总结了这3个影响因素的已有研究成果;随后,总结了一类特殊的软件缺陷预测问题(即,基于代码修改的缺陷预测)的已有研究工作;最后,对未来研究可能面临的挑战进行了展望.
- 陈翔顾庆刘望舒刘树龙倪超
- 关键词:软件质量保障软件缺陷预测
- 基于特征迁移和实例迁移的跨项目缺陷预测方法被引量:14
- 2019年
- 在实际软件开发中,需要进行缺陷预测的项目可能是一个新启动项目,或者这个项目的历史训练数据较为稀缺.一种解决方案是利用其他项目(即源项目)已搜集的训练数据来构建模型,并完成对当前项目(即目标项目)的预测.但不同项目的数据集间会存在较大的分布差异性.针对该问题,从特征迁移和实例迁移角度出发,提出了一种两阶段跨项目缺陷预测方法 FeCTrA.具体来说,在特征迁移阶段,该方法借助聚类分析选出源项目与目标项目之间具有高分布相似度的特征;在实例迁移阶段,该方法基于TrAdaBoost方法,借助目标项目中的少量已标注实例,从源项目中选出与这些已标注实例分布相近的实例.为了验证FeCTrA方法的有效性,选择Relink数据集和AEEEM数据集作为评测对象,以F1作为评测指标.首先,FeCTrA方法的预测性能要优于仅考虑特征迁移阶段或实例迁移阶段的单阶段方法;其次,与经典的跨项目缺陷预测方法 TCA+、Peters过滤法、Burak过滤法以及DCPDP法相比,FeCTrA方法的预测性能在Relink数据集上可以分别提升23%、7.2%、9.8%和38.2%,在AEEEM数据集上可以分别提升96.5%、108.5%、103.6%和107.9%;最后,分析了FeCTrA方法内的影响因素对预测性能的影响,从而为有效使用FeCTrA方法提供了指南.
- 倪超陈翔刘望舒顾庆顾庆李娜
- 关键词:软件质量保障软件缺陷预测
- 一种基于卷积神经网络的砂岩显微图像特征表示方法被引量:9
- 2020年
- 砂岩显微图像分类是地质学研究中一项基本工作,在油气储集层评估等方面有重要意义.在实现自动分类时,由于砂岩显微图像具有复杂多变的显微结构,人工定义特征对砂岩显微图像的表示能力有限.此外,由于样本采集和标注成本高昂,带标记的砂岩显微图像很少.提出一种面向小规模数据集的基于卷积神经网络的特征表示方法FeRNet,以便有效地捕获砂岩显微图像的语义信息,提高对砂岩显微图像的特征表示能力.FeRNet网络结构简单,可降低网络对带标记图像数据量的要求,防止参数过拟合.针对带标记砂岩显微图像数量不足的问题,提出了图像扩增预处理方法及基于卷积自编码网络的权重初始化策略,降低了因数据不足造成的过拟合风险.基于采自西藏地区的砂岩显微图像数据集设计并进行实验,实验结果表明,在带标记砂岩显微图像数据不足的情况下,图像扩增和卷积自编码网络可以有效地改善FeRNet网络的训练效果,通过FeRNet网络提取的特征对砂岩显微图像的表示能力优于人工定义特征.
- 李娜顾庆姜枫郝慧珍郝慧珍倪超
- 关键词:卷积神经网络
- 基于文件粒度的多目标软件缺陷预测方法实证研究被引量:13
- 2019年
- 软件缺陷预测技术通过挖掘和分析软件库训练出软件缺陷预测模型,随后利用该模型来预测出被测软件项目内的缺陷程序模块,因此可以有效地优化测试资源的分配.在基于代价感知的评测指标下,有监督学习方法与无监督学习方法之间的预测性能比较是最近的一个热门研究话题.其中在基于文件粒度的缺陷预测问题中,Yan等人最近对Yang等人考虑的无监督学习方法和有监督学习方法展开了大规模实证研究,结果表明存在一些无监督学习方法,其性能要优于有监督方法.基于来自开源社区的10个项目展开了实证研究.结果表明:在同项目缺陷预测场景中,若基于ACC评测指标,MULTI方法与最好的无监督方法和有监督方法相比,其预测性能平均有105.81%和123.84%的提高;若基于POPT评测指标,MULTI方法与最好的无监督方法和有监督方法相比,其预测性能平均有35.61%和38.70%的提高.在跨项目缺陷预测场景中,若基于ACC评测指标,MULTI方法与最好的无监督方法和有监督方法相比,其预测性能平均有22.42%和34.95%的提高.若基于POPT评测指标,MULTI方法与最好的无监督方法和有监督方法相比,其预测性能平均有11.45%和17.92%的提高.同时,基于Huang等人提出的PMI和IFA评测指标,MULTI方法的表现与代价感知的指标相比存在一定的折衷问题,但仍好于在ACC和POPT评测指标下表现最好的两种无监督学习方法.除此之外,将MULTI方法与最新提出的OneWay和CBS方法进行了比较,结果表明,MULTI方法在性能上仍然可以显著优于这两种方法.同时,基于F1评测指标的结果也验证了MULTI方法在预测性能上的显著优越性.最后,通过分析模型构建的时间开销,表明MULTI方法的模型构建开销对开发人员来说处于可接受的范围之内.
- 陈翔赵英全顾庆顾庆倪超
- 关键词:软件质量保障软件缺陷预测有监督学习无监督学习多目标优化