您的位置: 专家智库 > >

杨晨

作品数:2 被引量:38H指数:2
供职机构:中国人民大学信息学院更多>>
发文基金:国家自然科学基金更多>>
相关领域:自动化与计算机技术更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 2篇自动化与计算...

主题

  • 2篇索引
  • 1篇地基
  • 1篇星表
  • 1篇学习化
  • 1篇数据库
  • 1篇数据库系统
  • 1篇索引表
  • 1篇天文
  • 1篇自动化
  • 1篇大数据

机构

  • 2篇中国人民大学
  • 1篇清华大学
  • 1篇中国科学院国...

作者

  • 2篇孟小峰
  • 2篇杨晨
  • 1篇王春凯
  • 1篇都志辉
  • 1篇万萌
  • 1篇魏建彦
  • 1篇任玮

传媒

  • 2篇计算机研究与...

年份

  • 1篇2019
  • 1篇2017
2 条 记 录,以下是 1-2
排序方式:
天文大数据挑战与实时处理技术被引量:7
2017年
超大型天文观测技术的出现不仅能够让研究人员观测到新的天文现象,更能用于验证已有物理模型的正确性.这些最新天文成果的发现是建立在海量天文数据的近乎实时产生、管理与分析的基础上,因此给目前的数据管理系统带来了新的挑战.以我国自主研发的地基广角相机阵(the ground-based wide-angle camera array,GWAC)天文望远镜为例,15s的采样和处理周期都处于短时标观测领域的世界前列,但却对数据管理系统提出了很多问题,包括多镜头并行输出数据管理、实时瞬变源发现、当前观测夜数据的秒级查询、数据持久化和快速离线查询等.基于上述问题,设计了分布式GWAC数据模拟生成器用于模拟真实GWAC数据产生场景,并基于产生的数据特性,提出一种两级缓存架构,使用本地内存解决多镜头并行输出、实时瞬变源发现,使用分布式共享内存实现秒级查询.为了平衡持久化和查询效率,设计一种星表簇结构将整个星表数据划分后聚集存储.根据天文需求特点,设计基于索引表的查询引擎能从缓存和星表簇以较小的代价对星表数据查询.通过实验验证,当前方案能够满足GWAC的需求.
杨晨翁祖建孟小峰任玮忻日辉王春凯都志辉万萌魏建彦
关键词:索引表
机器学习化数据库系统研究综述被引量:31
2019年
数据库系统经过近50年的发展,虽然已经普遍商用,但随着大数据时代的到来,数据库系统在2个方面面临挑战.首先数据量持续增大期望单个查询任务具有更快的处理速度;其次查询负载的快速变化及其多样性使得基于DBA经验的数据库配置和查询优化偏好不能实时地调整为最佳运行时状态.而数据库系统的性能优化进入瓶颈期,优化空间收窄,进一步优化只能依托新的硬件加速器来实现,传统的数据库系统不能够有效利用现代的硬件加速器;数据库系统具有成百个可调参数,面对工作负载频繁变化,大量繁琐的参数配置已经超出DBA的能力,这使得数据库系统面对快速而又多样性的变化缺乏实时响应能力.当下机器学习技术恰好同时符合这2个条件:应用现代加速器以及从众多参数调节经验中学习.机器学习化数据库系统将机器学习技术引入到数据库系统设计中.一方面将顺序扫描转化为计算模型,从而能够利用现代硬件加速平台;另一方面将DBA的经验转化为预测模型,从而使得数据库系统更加智能地动态适应工作负载的快速多样性变化.将对机器学习化数据库系统当前的研究工作进行总结与归纳,主要包括存储管理、查询优化的机器学习化研究以及自动化的数据库管理系统.在对已有技术分析的基础上,指出了机器学习化数据库系统的未来研究方向及可能面临的问题与挑战.
孟小峰马超红杨晨
关键词:数据库系统
共1页<1>
聚类工具0