2025年1月9日
星期四
|
欢迎来到海南省图书馆•公共文化服务平台
登录
|
注册
|
进入后台
[
APP下载]
[
APP下载]
扫一扫,既下载
全民阅读
职业技能
专家智库
参考咨询
您的位置:
专家智库
>
>
傅晓媛
作品数:
1
被引量:26
H指数:1
供职机构:
中央财经大学统计与数学学院、数学教学部
更多>>
发文基金:
教育部人文社会科学研究基金
国家教育部博士点基金
国家自然科学基金
更多>>
相关领域:
经济管理
更多>>
合作作者
苏治
清华大学经济管理学院
作品列表
供职机构
相关作者
所获基金
研究领域
题名
作者
机构
关键词
文摘
任意字段
作者
题名
机构
关键词
文摘
任意字段
在结果中检索
文献类型
1篇
中文期刊文章
领域
1篇
经济管理
主题
1篇
选股
1篇
遗传算法
1篇
主成分
1篇
核主成分分析
1篇
SVR
1篇
KPCA
机构
1篇
清华大学
1篇
中央财经大学
作者
1篇
苏治
1篇
傅晓媛
传媒
1篇
统计研究
年份
1篇
2013
共
1
条 记 录,以下是 1-1
全选
清除
导出
排序方式:
相关度排序
被引量排序
时效排序
核主成分遗传算法与SVR选股模型改进
被引量:26
2013年
量化选股一直是金融领域研究的热点。随着人工智能技术的空前发展,量化选股方法取得了很大进步。本文构建了基于核主成分遗传算法改进的支持向量回归机人工智能选股模型(KPCA-GA-SVR),并基于沪深股市股票基本面及交易数据,分别从短期和中长期对其选股性能和预测精度进行了实证分析。主要结论为:①遗传算法(GA)改进的SVR较传统模型预测精度更高,且避免了过度拟合;②与采用主成分降维技术的PCA-GA-SVR模型相比,基于核主成分特征提取的KPCA-GA-SVR模型,具有更好的模型稳健性及预测准确性;③中长期内该模型的预测误差随滑窗长度的增加有降低趋势,且一年期预测精度最高;短期内不同滑窗下,一周的预测效果最佳。本研究对个人投资者的投资决策及国家宏观监控股市动态变化都具积极意义。
苏治
傅晓媛
关键词:
核主成分分析
遗传算法
全选
清除
导出
共1页
<
1
>
聚类工具
0
执行
隐藏
清空
用户登录
用户反馈
标题:
*标题长度不超过50
邮箱:
*
反馈意见:
反馈意见字数长度不超过255
验证码:
看不清楚?点击换一张