针对输入信号受噪声干扰和输出观测噪声具有脉冲特征的稀疏系统辨识问题,提出一种基于CIM的偏差补偿(normalized least mean absolute deviation,NLMAD)算法,利用NLMAD算法可有效抵御脉冲输出观测噪声。首先应用无偏准则设计偏差补偿NLMAD算法来有效解决由于输入噪声导致的估计偏差问题;考虑到稀疏系统辨识问题,将CIM作为稀疏约束惩罚项引入到偏差补偿NLMAD算法提出了新的稀疏自适应滤波算法——CIMBCNLMAD算法。将所提算法应用于输入和输出均含有噪声的稀疏系统辨识和回声干扰抵消场景中,实验表明CIMBCNLMAD算法的稳态性能优于其他自适应滤波算法,说明该方法具有较强的鲁棒性且可应用于工程实践。
为了有效解决脉冲噪声环境下的稀疏系统辨识(Sparse system identification,SSI)问题,以l1-范数为约束构建稀疏递归互相关熵准则(Recursive maximum correntropy criterion,RMCC)算法来解决脉冲噪声对于辨识性能的影响。结合带遗忘算子的互相关熵准则和l1-范数作为代价函数,推导出一种递归形式的算法,其相对于传统的最大相关熵算法具有快的收敛速度及小的稳态误差。仿真实验结果表明:该算法对于脉冲噪声干扰环境下的SSI问题具有强的鲁棒性。