您的位置: 专家智库 > >

陈成

作品数:2 被引量:2H指数:1
供职机构:青岛科技大学数理学院更多>>
发文基金:山东省高等学校科技计划项目山东省自然科学基金国家自然科学基金更多>>
相关领域:生物学更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 2篇生物学

主题

  • 2篇支持向量
  • 2篇支持向量机
  • 2篇向量
  • 2篇向量机
  • 2篇基因
  • 2篇基因预测
  • 2篇非编码
  • 2篇非编码RNA
  • 1篇小波
  • 1篇小波变换
  • 1篇离散小波变换
  • 1篇基于支持向量...
  • 1篇NCRNA
  • 1篇ADABOO...
  • 1篇波变换
  • 1篇大数据

机构

  • 2篇青岛科技大学

作者

  • 2篇陈瑞欣
  • 2篇于彬
  • 2篇陈成
  • 2篇李珊
  • 1篇田保光
  • 1篇刘健

传媒

  • 2篇青岛科技大学...

年份

  • 1篇2018
  • 1篇2017
2 条 记 录,以下是 1-2
排序方式:
基于集成学习的人类LncRNA大数据基因预测被引量:1
2018年
长非编码RNA(LncRNA)在表观遗传调控、转录后调控和人类疾病中发挥着重要作用,利用机器学习方法从海量的RNA数据中识别出LncRNA十分必要。本研究提出一种基于集成学习的LncRNA大数据基因预测新方法。首先提取序列碱基出现频率的86个特征作为原始特征集合,其次,基于GA-SVM选取出最优特征,以SVM五折交叉验证的准确率作为适应度,最后构建AdaBoost算法与SVM相结合的基因预测模型(AdaBoost-SVM)。实验结果表明:AdaBoost-SVM模型对测试集LncRNA的预测准确率为89.26%,优于RF、SVM和DWT-SVM3种预测模型的结果。
于彬李珊陈成陈瑞欣田保光
关键词:基因预测ADABOOST算法支持向量机
基于支持向量机的人类ncRNA基因预测被引量:1
2017年
提出一种新的基于支持向量机的人类ncRNA基因预测方法。首先从GENCODE数据库和UCSC数据库中提取人的ncRNA和mRNA序列数据,选择单核苷酸、二核苷酸出现频率等86个特征作为原始数据,其次利用离散小波变换去除冗余信息和噪声,最后建立离散小波变换与支持向量机相结合的ncRNA基因预测模型(DWT-SVM)。实验结果表明DWTSVM模型对测试集ncRNA的预测准确率为93.71%,优于PCA-SVM和DWT-KNN两种预测模型的预测结果。
于彬陈成刘健李珊陈瑞欣
关键词:非编码RNA基因预测支持向量机离散小波变换
共1页<1>
聚类工具0