赵慧材 作品数:5 被引量:27 H指数:2 供职机构: 长沙理工大学 更多>> 发文基金: 湖南省高校创新平台开放基金 国家自然科学基金 湖南省研究生科研创新项目 更多>> 相关领域: 电气工程 更多>>
采用支持向量机图形用户界面的电力负荷组合预测方法 2013年 运用多种预测方法对中长期电力负荷预测所得结果会相差甚远,而综合各方法的组合预测能够避免其偏颇。由于在小样本和非线性拟合能力方面的优势,支持向量机方法被用于组合预测:多种传统方法预测值作为输入,拟合输入与输出之间的非线性关系,求得预测结果。针对SVM在处理回归问题时算法编程及参数寻优较为复杂的问题,提出了一种基于SVM图形用户界面(Graphical User Interface,GUI)工具箱的组合预测方法。算例分析表明,运用该方法,在预测过程中可直观、方便地应用通用软件工具包,且预测精度较高,便于推广和工程应用。 周任军 赵慧材 方昀晖 刘巍关键词:电力负荷 组合预测 支持向量机 图形用户界面 基于极限学习机方法的短期负荷预测 被引量:19 2013年 将极限学习机(ELM)方法引入电力系统短期负荷预测领域。该方法预测能力强,具有计算时间短、计算准确性高、全局搜索等显著特点。在运用ELM算法建立短期负荷预测模型过程中,采用归一化处理输入数据,使用主成分分析法选取计算样本,并由交互验证法确定最优主成分因子数和ELM隐含层节点数。实际算例表明,在于短期负荷预测的预测精度和运算时间方面,ELM方法较传统神经网络方法具有其独特的优势。 成天乐 周胜瑜 李斯 赵慧材 黄佩 蒋凌关键词:短期负荷预测 极限学习机 主成分分析法 结合模糊粗糙集和支持向量机的电力负荷短期预测方法 被引量:7 2015年 针对支持向量机(support vector machine,SVM)负荷预测方法中存在冗余信息、数据量过大而导致的训练时间过长、速度变慢等缺陷,利用模糊粗糙集(Fuzzy Rough Sets,FRS)能有效地处理不精确或不完备知识及冗余信息的特点,提出了一种结合FRS和SVM的短期负荷预测模型,将FRS理论中的属性约简算法用于解决电力负荷中众多影响因素的信息膨胀问题,采用属性约简算法剔除与决策信息不相关的因素,将约简后的因素作为SVM的输入,并采用SVM回归算法预测短期负荷。算例仿真表明,该预测模型可保证预测精度,加快计算速度。 赵慧材 陈跃辉 陈瑞先 彭子扬关键词:短期负荷预测 模糊粗糙集 属性约简 隶属函数 支持向量机 采用模糊粗糙集约简属性的支持向量机短期负荷预测方法 随着电力市场化进程的深入发展,在满足电力系统安全运行、可靠供电的前提下对系统运行的经济性提出了更高的要求。而短期负荷预测作为电力调度部门制订购电计划和安排运行方式的重要参考依据,对系统运行经济性的提高起着重要作用。由于影... 赵慧材关键词:电力系统 短期负荷预测 支持向量机 模糊粗糙集 属性约简 文献传递 考虑城市发展水平综合评分的城市电力负荷密度预测法 2013年 针对负荷密度指标法计算量大、过程复杂、预测精度依赖于大量样本数据的问题,提出基于城市发展水平综合评分的预测法,采用主成分分析法计算城市发展水平综合评分指标,利用该指标和趋势外推技术预测城市的负荷密度值.通过对8个城市的负荷密度值及城市发展水平综合评分值做比较分析,预测其中某一城市的负荷密度值,结果表明预测计算过程简单方便,具有很好的预测效果. 周任军 周胜瑜 文明 赵慧材 申磊 杨雨薇关键词:主成分分析