2025年1月17日
星期五
|
欢迎来到海南省图书馆•公共文化服务平台
登录
|
注册
|
进入后台
[
APP下载]
[
APP下载]
扫一扫,既下载
全民阅读
职业技能
专家智库
参考咨询
您的位置:
专家智库
>
>
王洪波
作品数:
1
被引量:17
H指数:1
供职机构:
江南大学通信与控制工程学院
更多>>
发文基金:
国家自然科学基金
更多>>
相关领域:
自动化与计算机技术
更多>>
合作作者
朱启兵
江南大学通信与控制工程学院
作品列表
供职机构
相关作者
所获基金
研究领域
题名
作者
机构
关键词
文摘
任意字段
作者
题名
机构
关键词
文摘
任意字段
在结果中检索
文献类型
1篇
中文期刊文章
领域
1篇
自动化与计算...
主题
1篇
支持向量
1篇
支持向量机
1篇
最小二乘
1篇
最小二乘支持...
1篇
向量机
1篇
经验模式分解
1篇
非线性
1篇
SVM
1篇
EMD
1篇
LS-SVM
机构
1篇
江南大学
作者
1篇
朱启兵
1篇
王洪波
传媒
1篇
计算机工程与...
年份
1篇
2008
共
1
条 记 录,以下是 1-1
全选
清除
导出
排序方式:
相关度排序
被引量排序
时效排序
基于EMD和LS-SVM的非平稳振动信号趋势预测
被引量:17
2008年
镇动信号的趋势预测是设备状态监测与故障诊断中的一个重要内容。随着运行设备的非线性、非平稳特点越来越明显,传统的数学建摸预报方法已不能满足设备的复杂化和现代化要求。提出了一种基于经验模式分解EMD(Empirical Mode Decompo-sition)和最小二乘支持向量机LS-SVM(Least Square Support Vector Machine)的新模型。首先,运用EMD将趋势时间序列自适应地分解成一系列不同尺度的本征模式分量IMF(intrinsicmode function);其次,对每个本征模式分量,采用合适的核函数和超参数构造不同的LS-SVM进行预测;最后对各分量的预测值进行拟合得到最终的预测值。仿真实验表明,此方法与单一的LS-SVM预测法相比,具有较高的精度和较强的推广能力。
王洪波
朱启兵
关键词:
非线性
全选
清除
导出
共1页
<
1
>
聚类工具
0
执行
隐藏
清空
用户登录
用户反馈
标题:
*标题长度不超过50
邮箱:
*
反馈意见:
反馈意见字数长度不超过255
验证码:
看不清楚?点击换一张