为解决基于关节力矩的双足机器人参数辨识方法辨识精度不高,基于完整的足底力信息和运动捕捉数据的辨识方法对实验条件要求较高的问题,提出基于ZMP(zero moment point)数据的双足机器人惯性参数辨识方法。将理论ZMP与实际ZMP的位置偏差作为目标函数,考虑参数范围和机器人总质量两类约束条件,建立只使用双足机器人自身传感器采样数据的惯性参数辨识优化模型。针对所建模型无法拆分成线性形式的问题,推导目标函数关于参数矢量的梯度矢量和海塞矩阵,并给出了基于最速下降法和牛顿法的优化求解算法。使用GoRoBoT-II机器人的双足部分,进行腿部杆件的惯性参数辨识实验,将所提出方法得到的辨识结果与传统基于关节力矩的辨识结果进行对比,发现基于ZMP的辨识方法的结果更接近于三维几何建模得到的参数标称值,且理论ZMP与实际ZMP的偏差均值为4.6 mm,小于传统基于力矩辨识方法的12.4 mm,说明所提出的基于ZMP的惯性参数辨识方法能够得到比传统方法更好的结果。
为深入研究服务型仿人机器人实时跟随人步行的问题,提出了基于人体步行运动捕捉的双足机器人步行样本生成方法,并进行了机器人-人跟随步行实验.对PS三维运动捕捉系统在线获取的人体步行样本进行运动学匹配并考虑机器人关节极限约束条件后,得到机器人步行样本,构建机器人仿人步行的样本库;根据笛卡尔空间和关节空间内的运动参数定义机器人与人的步行相似度综合评价,提出基于相似度评价的在线样本检索方法,以"关节角距离"为评价选取拼接点,实现样本在线拼接的样本过渡方法,解决了机器人跟随人进行变速步行的问题;完成了双足机器人跟随不同人进行稳定步行的实验,跟随过程中的距离误差不超过±52 mm,跟随结束后的位置误差不超过±10 mm.