2024年12月23日
星期一
|
欢迎来到海南省图书馆•公共文化服务平台
登录
|
注册
|
进入后台
[
APP下载]
[
APP下载]
扫一扫,既下载
全民阅读
职业技能
专家智库
参考咨询
您的位置:
专家智库
>
>
陈谦
作品数:
1
被引量:2
H指数:1
供职机构:
河北工业大学人工智能与数据科学学院
更多>>
发文基金:
天津市科技计划
河北省自然科学基金
更多>>
相关领域:
自动化与计算机技术
更多>>
合作作者
吴清
河北省大数据计算重点实验室天津...
作品列表
供职机构
相关作者
所获基金
研究领域
题名
作者
机构
关键词
文摘
任意字段
作者
题名
机构
关键词
文摘
任意字段
在结果中检索
文献类型
1篇
中文期刊文章
领域
1篇
自动化与计算...
主题
1篇
特征值
1篇
显著区域检测
1篇
RANSAC...
1篇
SURF算法
1篇
SURF特征
机构
1篇
河北工业大学
作者
1篇
吴清
1篇
陈谦
传媒
1篇
软件导刊
年份
1篇
2017
共
1
条 记 录,以下是 1-1
全选
清除
导出
排序方式:
相关度排序
被引量排序
时效排序
基于显著区域检测的SURF特征匹配优化算法
被引量:2
2017年
针对传统SURF匹配算法在特征点选取阶段选取了大量不符合匹配预期的特征点,增加了后期匹配的运算复杂度,提出一种SURF算子和显著区域检测相结合的方法。为使检测出的极值点和预期匹配的目标更加接近,用SURF算子构建出尺度空间图像后对该空间作显著区域检测,再对特征点赋显著度权值并通过孤立点剔除和局部冗余筛选出目标点,筛选后的特征点比传统方法得到的特征点数量明显减少,在降低时间复杂度的同时匹配精度提高了18%。特征匹配时引入RANSAC算法剔除误匹配点对,对匹配结果作进一步修正。实验表明,与传统SURF算法比较,改进算法在实时性和匹配精度方面均更优。
陈谦
吴清
关键词:
SURF算法
显著区域检测
特征值
RANSAC算法
全选
清除
导出
共1页
<
1
>
聚类工具
0
执行
隐藏
清空
用户登录
用户反馈
标题:
*标题长度不超过50
邮箱:
*
反馈意见:
反馈意见字数长度不超过255
验证码:
看不清楚?点击换一张