叶面积指数(leave area index,LAI)是表征植被冠层结构和生长状况的关键参数,采用遥感技术进行LAI反演是遥感反演领域的热点和难点之一。利用小麦关键生育期的高光谱数据,计算其一阶和二阶导数,并构建植被指数(RVI,NDVI,EVI,DVI和MSAVI)及三边变量参数等高光谱变量;将上述参数与小麦LAI数据进行相关性分析,并利用交叉验证法进行多种回归分析,确定反演小麦LAI的敏感参数,选择反演模型;最后使用敏感参数构建所有样本的小麦LAI反演模型,并比较其拟合效果。研究结果表明:经过交叉验证的反演建模,其拟合结果的均方根误差(RMSE)整体上较未经交叉验证反演建模结果的RMSE小;在用敏感参数构建的回归模型中,RVI立方回归模型是用遥感数据反演小麦LAI的最优模型。