齐磊
- 作品数:4 被引量:19H指数:2
- 供职机构:昆明理工大学信息工程与自动化学院更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:自动化与计算机技术机械工程更多>>
- 基于GA-BP神经网络的多传感器轴承故障诊断被引量:6
- 2017年
- 由于单一传感器采集滚动轴承的故障信息精度较低,提出基于GA-BP神经网络的多传感器信息融合方法。首先使用单一传感器采集其状态信息,并采用小波包分析提取轴承故障状态特征,然后采用遗传算法(GA)优化BP神经网络对单传感器进行滚动轴承故障诊断,接着运用DS证据理论把每一个诊断结果进行信息融合,最终得到诊断结果。仿真实验结果表明:该方法可提高滚动轴承故障诊断的精确度和效率。
- 李荣远张国银王海瑞王雪宋怡然齐磊任玉卿
- 关键词:故障诊断滚动轴承GA-BP神经网络DS证据理论信息融合
- 基于IAGA-SVM的捣固车液压系统故障诊断研究被引量:2
- 2017年
- 针对传统液压系统故障诊断方法受人为因素影响较为严重,故障成因相对复杂等问题。提出一种改进的自适应捣固车液压系统故障诊断方法。首先,从捣固车的车载数据中采集系统抽取出来的故障特征值。其次,将特征值输入支持向量机(SVM)模型中进行训练,同时对核函数和惩罚系数做出优化。最后,应用自适应支持向量机建立从特征向量到故障模式之间的映射,最终做到对液压系统的故障诊断。结果可得,此方法可以准确高效地诊断出故障类型,证明了此方法的实用价值。此外,经过与GA-SVM以及AGA-SVM的对比剖析,表明了IAGA-SVM方法在故障诊断领域中的卓越性。
- 齐磊王海瑞李荣远李英任玉卿
- 关键词:液压系统故障诊断支持向量机
- 基于谐波小波包和DAG-RVM的滚动轴承故障诊断被引量:2
- 2017年
- 针对传统滚动轴承故障诊断方法受人为因素影响较为严重,故障成因相对复杂等问题,在现有的研究基础上提出一种基于小波包分析和有向无环图相关向量机相结合的故障诊断方法。将滚动轴承在不同的故障条件下的振动信号进行谐波小波包分解与重构,提取频带能量作为特征向量,应用有向无环图相关向量机建立从特征向量到故障模式之间的映射,最终做到对滚动轴承的故障诊断。结果表明,该方法能够快速准确地诊断出滚动轴承故障,验证了该方法的有效性和稳定性。此外,通过与支持向量机(SVM)的对比分析,显示了RVM在智能故障诊断应用中的优越性。
- 齐磊王海瑞李宇芳李英任玉卿
- 关键词:谐波小波包有向无环图相关向量机
- 基于振动信号能量熵的轴承故障诊断被引量:9
- 2017年
- 轴承大量存在于机械设备当中,轴承的故障也是各种机械故障的主要原因。对轴承故障及时和准确的判断,可以有效地预防由轴承故障引起的事故,减少损失。基于此提出一种基于振动信号能量熵的轴承故障诊断的方法。轴承在不同的工作状态下,轴承振动信号的能量熵不同,也就是能量分布也是不同的,可以通过能量分布的不同判断轴承的状态。首先对轴承的振动信号进行总体平均经验模态分解EEMD(Ensemble Empirical Mode Decomposition),获得若干个本征模函数IMF(Intrinsic Mode Function),然后计算本征模函数能量特征,将能量特征作为输入,可以建立相关向量机判断轴承的状态。通过实验验证,基于振动信号能量熵的故障诊断方法可以有效地应用于轴承的故障诊断。
- 任玉卿王海瑞齐磊李荣远
- 关键词:故障诊断