P2P流量逐渐成为互联网流量的重要组成部分,精确分类P2P流量对于有效管理网络和合理利用网络资源都具有重要意义。近年来,利用机器学习方法处理P2P流量分类问题已成为流量识别领域的一个新兴研究方向。利用决策树中的C4.5算法和P2P流量的特征属性来构建决策树模型,进而完成P2P流量分类问题。实验结果表明,基于决策树模型的方法能有效避免P2P网络流分布变化所带来的不稳定性;与SVM(support vectormachine,支持向量机)、NBK(na ve Bayes using kernel density estimation,改进的朴素贝叶斯)方法相比,其平均分类准确率能提高至少3.83个百分点。