您的位置: 专家智库 > >

陈嘉颖

作品数:11 被引量:34H指数:2
供职机构:新疆大学软件学院更多>>
发文基金:国家自然科学基金更多>>
相关领域:自动化与计算机技术电子电信更多>>

文献类型

  • 11篇中文期刊文章

领域

  • 10篇自动化与计算...
  • 1篇电子电信

主题

  • 3篇网络
  • 2篇用户
  • 2篇语言处理
  • 2篇神经网
  • 2篇神经网络
  • 2篇偏好
  • 2篇自然语言
  • 2篇自然语言处理
  • 2篇协同过滤
  • 2篇命名实体识别
  • 2篇卷积
  • 2篇编码器
  • 2篇TRANSF...
  • 1篇蛋白质功能
  • 1篇蛋白质功能预...
  • 1篇蛋白质序列
  • 1篇循环神经网络
  • 1篇引文
  • 1篇引文网络
  • 1篇用户偏好

机构

  • 11篇新疆大学
  • 4篇新疆维吾尔自...
  • 3篇北京理工大学
  • 1篇中南大学
  • 1篇中国科学院大...

作者

  • 11篇陈嘉颖
  • 7篇于炯
  • 7篇杨兴耀
  • 4篇钱育蓉
  • 3篇冷洪勇
  • 1篇卞琛

传媒

  • 3篇计算机应用
  • 3篇计算机工程与...
  • 2篇计算机工程
  • 2篇计算机工程与...
  • 1篇现代电子技术

年份

  • 7篇2024
  • 2篇2023
  • 1篇2017
  • 1篇2016
11 条 记 录,以下是 1-10
排序方式:
人工智能在功能磁共振成像数据中的自闭症研究综述被引量:1
2023年
自闭症谱系障碍是一种严重的精神障碍疾病,多发于儿童时期,影响个体的社交和日常生活。近年来,基于功能磁共振成像(functional magnetic resonance imaging,fMRI)数据的自闭症人工智能诊断成为研究热点。机器学习、深度学习等先进技术已经被用于自闭症的智能辅助诊断研究中,旨在提高诊断的效率、准确性以及探索发病机制。首先介绍了自闭症智能诊断的背景、重要意义和面临的挑战;其次回顾了近5年智能诊断相关技术在自闭症分类识别中的进展,从机器学习和深度学习两方面总结、分析智能诊断不同方法的特点和局限性;最后探讨了自闭症智能诊断亟需解决的问题及未来研究趋势,为自闭症早期诊断和临床应用提供指导和参考。
顾剑钱育蓉王兰兰胡月陈嘉颖冷洪勇冷洪勇
关键词:人工智能自闭症谱系障碍功能磁共振成像
结合自我特征和对比学习的推荐模型
2024年
针对图神经网络推荐中图卷积在消息传递过程的嵌入表示过平滑和噪声问题,提出一种结合自我特征和对比学习的推荐模型(SfCLRec)。采用预训练-正式训练架构训练模型,首先预训练用户和项目的嵌入表示,通过融合节点自我特征维持节点本身的特征唯一性,并引入层级对比学习任务减少来自高阶邻居节点中的噪声;其次,在正式训练阶段根据评分机制重新构建协同图邻接矩阵;最后,根据最终嵌入得到预测评分。实验结果表明,相较于LightGCN、SimGCL(Simple Graph Contrastive Learning)等现有图神经网络推荐模型,SfCLRec在3个公开数据集ML-latest-small、Last.FM和Yelp中均取得了较好的召回率和归一化折损累计增益(NDCG),验证了SfCLRec的有效性。
杨兴耀陈羽于炯张祖莲陈嘉颖王东晓
关键词:个性化推荐
基于生物信息学的蛋白质功能预测研究综述被引量:1
2023年
蛋白质功能预测任务旨在为缺失功能标签的蛋白质数据提供功能注释,随着蛋白质测序技术的发展,数据库中蛋白质数量迅速增长,由于蛋白质数据的复杂性和多元性,蛋白质功能预测任务极具挑战,受到研究人员的密切关注。梳理了机器学习在蛋白质功能预测中的发展历程;对近年来的蛋白质功能预测方法进行归类与总结,分析各类算法之间的异同;最后对蛋白质功能预测存在的问题进行讨论,并对该领域的未来研究进行展望。
李昕晖钱育蓉岳海涛胡月陈嘉颖冷洪勇冷洪勇
关键词:蛋白质功能预测蛋白质序列生物计算生物信息学
基于偏好感知的去噪图卷积网络社交推荐
2024年
协同过滤推荐通常面临用户-项目交互数据稀疏的挑战,社交推荐引入用户社交关系来缓解数据稀疏性问题。多数基于图神经网络(GNN)的社交推荐系统在消息传递过程中无法根据用户偏好聚合高阶邻居信息,造成嵌入表示过平滑和噪声问题。针对上述问题,提出一种基于偏好感知的去噪图卷积网络的社交推荐模型PD-GCN。使用无监督学习将具有相似偏好的用户分配到用户-项目交互子图和社交子图,在子图中进行更高阶的图卷积运算,缓解了现有模型的过平滑问题。从全局和局部的角度出发,通过考虑相同偏好用户节点的特征相似度和邻域节点偏好分布多样性识别并去除噪声节点,增强模型对用户-项目交互和社交关系噪声的鲁棒性。在LastFM、Ciao、Yelp 3个公共数据集上的实验结果表明,PD-GCN模型在召回率和归一化折损累计增益两个指标上相较于其他主流模型表现出更优的性能,验证了PD-GCN模型的有效性。
杨兴耀马帅张祖莲于炯陈嘉颖王东晓
关键词:用户偏好推荐系统
考虑用户间消极相似性的排序推荐算法被引量:1
2017年
由于用户评分标准存在差异,基于打分的协同过滤推荐算法在近邻选择过程中存在误差。针对以上问题,提出考虑用户间消极相似性的排序推荐算法(NS-TauRank),该算法不经过对拟推荐项目的预测评分过程。定义DP函数表示项目对相关属性,充分利用用户间的消极相似性,即相似性为负的用户之间的爱好相反,改进目标用户的近邻选择过程,采用舒尔茨方法进行偏好融合,优化目标用户拟推荐项目的排序。在Eachmovie和movielens数据集上对改进算法进行验证,以NDCG作为评价函数,验证结果表明,该算法在两个数据集上的NDCG@1-2值较对比算法有4%-7%的提高,产生了更可靠的拟推荐序列。
陈嘉颖于炯杨兴耀国冰磊
关键词:偏好协同过滤
中文命名实体识别研究综述被引量:14
2024年
命名实体识别(named entity recognition,NER)是自然语言处理中最基本的任务之一,其主要内容是识别自然语言文本中具有特定意义的实体类型和边界。然而,中文命名实体识别(Chinese named entity recognition,CNER)的数据样本存在词边界模糊、语义多样化、形态特征模糊以及中文语料库内容较少等问题,导致中文命名实体识别性能难以大幅提升。介绍了CNER的数据集、标注方案和评价指标。按照CNER的研究进程,将CNER方法分为基于规则的方法、基于统计的方法和基于深度学习的方法三类,并对近五年来基于深度学习的CNER主要模型进行总结。探讨CNER的研究趋势,为新方法的提出和未来研究方向提供一定参考。
赵继贵钱育蓉王魁侯树祥陈嘉颖
关键词:自然语言处理中文命名实体识别
基于深度学习的命名实体识别研究综述
2024年
命名实体识别是自然语言处理领域的一项关键任务,其目的在于从自然语言文本中识别出具有特定含义的实体,如人名、地名、机构名和专有名词等。在命名实体识别任务中,研究人员提出过多种方法,包括基于知识和有监督的机器学习方法。近年来,随着互联网文本数据规模的快速扩大和深度学习技术的快速发展,深度学习模型已成为命名实体识别的研究热点,并在该领域取得显著进展。文中全面回顾现有的命名实体识别深度学习技术,主要分为四类:基于卷积神经网络模型、基于循环神经网络模型、基于Transformer模型和基于图神经网络模型的命名实体识别。此外,对深度学习的命名实体识别架构进行了介绍。最后,探讨命名实体识别所面临的挑战以及未来可能的研究方向,以期推动命名实体识别领域的进一步发展。
张继元钱育蓉冷洪勇侯树祥陈嘉颖
关键词:命名实体识别自然语言处理卷积神经网络循环神经网络TRANSFORMER
联合训练下融合编解码器的序列推荐算法
2024年
现有基于Transformer的推荐算法通常仅考虑使用编码器来进行推荐预测,缺乏利用解码器去“解码”用户行为序列的能力,不能较为准确预测用户下一次的交互行为。为解决此问题,基于阿里巴巴电子商务推荐的行为序列模型(BST)提出联合训练下融合编解码器的序列推荐算法模型BSTEAD。通过采用联合训练机制,设置Transformer预测任务和BST预测任务。将两条预测任务的损失进行加权求和,得到最终的损失函数。在MovieLens和Goodbooks两个公共数据集上的实验结果表明,BSTEAD推荐算法与5个对比模型相比性能具有显著提升,验证了联合训练机制下解码器对推荐任务的有效性。
杨兴耀党子博于炯陈嘉颖常梦雪许凤
关键词:编码器解码器
基于层间融合滤波器与社交神经引文网络的推荐算法
2024年
推荐算法是一种用于解决信息过载问题的方法,引文推荐通过引文上下文能够自动匹配候选论文列表。现有基于神经引文网络模型在引文上下文数据预处理的过程中,存在文本噪声和上下文学习不充分的问题。为此,提出一种基于层间融合滤波器和社交神经引文网络的推荐算法FS-Rec。首先,利用具有层间融合滤波器的BERT模型预处理引文上下文,在频域内从所有频率中提取有意义的特征,缓解引文上下文数据的噪声,同时在频域中对多层信息进行融合,增强上下文表示学习的能力;然后,在引文作者嵌入中引入社交关系,与其他引文信息嵌入通过编码器获得表示,将这些表示与经过BERT预训练的引文上下文表示进行融合,得到最终表示;最后,根据最终表示生成引文文本预测。实验结果表明,相较于现有的上下文引文推荐模型,FS-Rec在2个基准数据集arXivCS和PubMed取得了更高的召回率和平均倒数排名(MMR),证明了模型的有效性。
杨兴耀李志林张祖莲于炯陈嘉颖王东晓
基于层级过滤器和时间卷积增强自注意力网络的序列推荐
2024年
针对实际推荐场景中用户意外交互产生的噪声问题,以及自注意力机制中注意力分布分散导致用户短期需求偏移难以捕获的问题,提出一种基于层级过滤器和时间卷积增强自注意力网络的序列推荐(FTARec)模型。首先,通过层级过滤器过滤原始数据中的噪声;其次,结合时间卷积增强自注意力网络和解耦混合位置编码获取用户嵌入,该过程通过时间卷积增强补充自注意力网络在项目短期依赖建模上的不足;最后,结合对比学习改善用户嵌入,并根据最终用户嵌入进行预测。相较于自注意力序列推荐(SASRec)、过滤增强的多层感知器序列推荐方法(FMLPRec)等现有序列推荐模型,FTARec在3个公开数据集Beauty、Clothing和Sports上取得了更高的命中率(HR)和归一化折损累计增益(NDCG),相较于次优的DuoRec,HR@10分别提高了7.91%、13.27%和12.84%,NDCG@10分别提高了5.52%、8.33%和9.88%,验证了所提模型的有效性。
杨兴耀沈洪涛张祖莲于炯陈嘉颖王东晓
共2页<12>
聚类工具0