现有追求高压缩质量的高光谱图像压缩算法普遍存在计算复杂度高、离线式处理、嵌入式平台实现难度大等问题,目前很难得到实际应用。为解决以上问题,设计一种基于KLT和HEVC的嵌入式高光谱图像实时压缩方法。首先基于KLT去除谱间相关性,然后基于HEVC去除空间相关性并完成量化编码的过程。基于NVIDIA Jetson TX1平台,设计并实现了CPU和GPU异构并行压缩处理系统。利用真实数据集对所设计算法和所实现平台进行了性能及可行性验证。实验结果表明:在相同压缩比下,与离散小波变换(DWT)+JPEG2000算法相比,该系统明显提升了重建精度,在峰值信噪比(PSNR)方面平均提高了1.36 d B;同时,相比CPU,在GPU中进行KLT计算也至多可缩短33%的运行时间。
机会群智感知网络中,不同节点间的相遇间隔各异,任务由不同节点执行时的时间成本有较大差异性。为最小化任务平均完成时间,设计并实现了一种基于预测的多任务在线分配算法(online multi-task assignment based on prediction,OTAP)。基于真实移动轨迹数据集,分析了节点间相遇间隔分布,设计了节点相遇规律发现子算法;利用对节点间的相遇间隔的预测,每次给执行节点分配在与任务分发者下次相遇间隔内能完成的最大任务量。针对4个不同的真实移动轨迹数据集,利用ONE模拟器,对OTAP算法性能进行了验证与分析。结果显示,相比于已有的NTA算法,OTAP在4个不同数据集中平均任务完成时间分别缩短了50.49%、45.34%、32.71%、32.23%,任务完成率在其中两个移动轨迹数据集中也有所提高。