随着基于位置社交网络(location-based social network,LBSN)的发展,兴趣点推荐成为满足用户个性化需求、减轻信息过载问题的重要手段.然而,已有的兴趣点推荐算法存在如下的问题:1)多数已有的兴趣点推荐算法简化用户签到频率数据,仅使用二进制值来表示用户是否访问一个兴趣点;2)基于矩阵分解的兴趣点推荐算法把签到频率数据和传统推荐系统中的评分数据等同看待,使用高斯分布模型建模用户的签到行为;3)忽视用户签到数据的隐式反馈属性.为解决以上问题,提出一个基于Ranking的泊松矩阵分解兴趣点推荐算法.首先,根据LBSN中用户的签到行为特点,利用泊松分布模型替代高斯分布模型建模用户在兴趣点上签到行为;然后采用BPR(Bayesian personalized ranking)标准优化泊松矩阵分解的损失函数,拟合用户在兴趣点对上的偏序关系;最后,利用包含地域影响力的正则化因子约束泊松矩阵分解的过程.在真实数据集上的实验结果表明:基于Ranking的泊松矩阵分解兴趣点推荐算法的性能优于传统的兴趣点推荐算法.
随着位置社交网络(location-based social network,LBSN)的快速增长,兴趣点(point-ofinterest,POI)推荐已经成为一种帮助人们发现有趣位置的重要方式.现有的研究工作主要是利用用户签到的历史数据及其情景信息(如地理信息、社交关系)来提高推荐质量,而忽视了利用兴趣点相关的评论信息.但是,现实中用户在LBSN中只对少数兴趣点进行签到,使得用户签到历史数据及其情景信息极其稀疏,这对兴趣点推荐来说是一个巨大的挑战.为此,提出了一种新的兴趣点推荐模型,称为GeoSoRev模型.该模型在已有的基于矩阵分解的经典推荐模型的基础上,融合关于兴趣点的评论信息、用户社交关联和地理信息这3个因素进行兴趣点推荐.基于2个来自Foursquare的真实数据集的实验结果表明,与其他主流的兴趣点推荐模型相比,GeoSoRev模型在准确率和召回率等多项评价指标上都取得了显著的提高.