The aim of the study was to identify the relationship between molecular subtypes of breast cancer (BC) and the morphological characteristics of axillary lymph nodes (ALN) and metastatic risk in BC patients to clarify danger degree and justification of removal before metastases appear. Material and methods. Tumor molecular subtypes of 116 female BC patients aged 24 - 75 (53.9 ± 0.8) were determined by tumor tissue immunohistological examination (obtained by tru-cut biopsy), and the BC was classified as Luminal A, Luminal B/HER2−, Luminal B/HER2+, TNBC, and HER2+ subtypes. To interpret the results for the BC receptor status, immunohistochemical analysis was performed and interpreted according to the Allred scale. Lymph node size, shape, structure and conglomerates availability were recorded according to ultrasonography (USG) examination evaluated on “LOGIQ C5-Premium” (2012). Blood CA-15-3 levels were analyzed using a COBAS-e 411 automated analyzer. Statistical analysis of the obtained results was carried out using the SPSS-26 software package, and based on the t-Student-Bonferroni and H-Kruskal-Wallis criteria. The sensitivity and specificity of the indicators studied were determined using ROC statistical analysis. Results showed a significant association of some subtypes, as well as receptor expression, with tumor metastasis to ALN. Conclusion: 1) The HER2+ subtype is the most aggressive in terms of ALN metastasis. Although TNBC is the most aggressive subtype in general, it is characterized by fewer metastases to the ALN than the HER2+ subtype. 2) Metastatic ALNs can be distinguished based on their cortical structure before tumor tissue biopsy, which is economically profitable. These LNs can be removed without biopsy.
We make a systematic study of two-parameter models of δ ′ s -sphere interaction and δ ′ s -sphere plus a Coulomb interaction. Where δ ′ s interaction denotes the δ ′ -sphere interaction of the second kind. We provide the mathematical definitions of Hamiltonians and obtain new results for both models, in particular the resolvents equations, spectral properties and some scattering quantities.