目的:探讨不同强度经颅直流电刺激(tDCS)治疗真性球麻痹吞咽障碍的临床疗效。方法:选取符合入选标准的真性球麻痹患者42例,随机分为假刺激组、低强度组、高强度组,每组14例。3组患者均给予常规吞咽康复训练,假刺激组予以假性tDCS刺激,低强度组予以1 mA tDCS电刺激,高强度组予以2 mA tDCS电刺激;均为20 min/次,5次/周,共治疗3周。分别于治疗前和治疗3周后,采用纤维内镜下吞咽困难严重程度量表(FEDSS)、改良曼恩吞咽能力评估量表(MMASA)评分和表面肌电(sEMG)数据进行评定和分析。结果:治疗后,低强度组和高强度组的FEDSS评分低于假刺激组(均P<0.05),且高强度组低于低强度组(均P<0.05);低强度组和高强度组的MMASA评分和sEMG平均肌电值均高于假刺激组(均P<0.05),且高强度组高于低强度组(P<0.05)。结论:低强度、高强度tDCS电刺激均可改善真性球麻痹吞咽障碍,且高强度刺激疗效可能优于低强度刺激。
The groundwater potential map is an important tool for a sustainable water management and land use planning,particularly for agricultural countries like Vietnam.In this article,we proposed new machine learning ensemble techniques namely AdaBoost ensemble(ABLWL),Bagging ensemble(BLWL),Multi Boost ensemble(MBLWL),Rotation Forest ensemble(RFLWL)with Locally Weighted Learning(LWL)algorithm as a base classifier to build the groundwater potential map of Gia Lai province in Vietnam.For this study,eleven conditioning factors(aspect,altitude,curvature,slope,Stream Transport Index(STI),Topographic Wetness Index(TWI),soil,geology,river density,rainfall,land-use)and 134 wells yield data was used to create training(70%)and testing(30%)datasets for the development and validation of the models.Several statistical indices were used namely Positive Predictive Value(PPV),Negative Predictive Value(NPV),Sensitivity(SST),Specificity(SPF),Accuracy(ACC),Kappa,and Receiver Operating Characteristics(ROC)curve to validate and compare performance of models.Results show that performance of all the models is good to very good(AUC:0.75 to 0.829)but the ABLWL model with AUC=0.89 is the best.All the models applied in this study can support decision-makers to streamline the management of the groundwater and to develop economy not only of specific territories but also in other regions across the world with minor changes of the input parameters.
Hoang Phan Hai YenBinh Thai PhamTran Van PhongDuong Hai HaRomulus CostacheHiep Van LeHuu Duy NguyenMahdis AmiriNguyen Van TaoIndra Prakash