Flexible sensors have been widely investigated due to their broad application prospects in various flexible electronics.However,most of the presently studied flexible sensors are only suitable for working at room temperature,and their applications at high or low temperatures are still a big challenge.In this work,we present a multimodal flexible sensor based on functional oxide La0.7Sr0.3MnO3(LSMO)thin film deposited on mica substrate.As a strain sensor,it shows excellent sensitivity to mechanical bending and high bending durability(up to 3600 cycles).Moreover,the LSMO/Mica sensor also shows a sensitive response to the magnetic field,implying its multimodal sensing ability.Most importantly,it can work in a wide temperature range from extreme low temperature down to 20K to high temperature up to 773 K.The flexible sensor based on the flexible LSMO/mica hetero-structure shows great potential applications for flexible electronics using at extreme temperature environment in the future.
Grouping different oxide materials with coupled charge, spin, and orbital degrees of freedom together to form heterostructures provides a rich playground to explore the emergent interfacial phenomena. The perovskite/brownmillerite heterostructure is particularly interesting since symmetry mismatch may produce considerable interface reconstruction and unexpected physical effects. Here, we systemically study the magnetic anisotropy of tensely strained La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers with interface structures changing from perovskite/brownmillerite type to perovskite/perovskite type. Without Mn doping, the initial La2/3Sr1/3CoO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3CoO2.5+δ trilayer with perovskite/brownmillerite interface type exhibits perpendicular magnetic anisotropy and the maximal anisotropy constant is 3.385×106 erg/cm3, which is more than one orders of magnitude larger than that of same strained LSMO film. By increasing the Mn doping concentration, the anisotropy constant displays monotonic reduction and even changes from perpendicular magnetic anisotropy to in-plane magnetic anisotropy, which is possible because of the reduced CoO4 tetrahedra concentration in the La2/3Sr1/3Co1-xMnxO2.5+δ layers near the interface. Based on the analysis of the x-ray linear dichroism, the orbital reconstruction of Mn ions occurs at the interface of the trilayers and thus results in the controllable magnetic anisotropy.
In this paper,we investigate the effects of lattice strain on the electrical and magnetotransport properties of La0.7Sr0.3MnO3(LSMO)films by changing film thickness and substrate.For electrical properties,a resistivity upturn emerges in LSMO films,i.e.,LSMO/STO and LSMO/LSAT with small lattice strain at a low temperature,which originates from the weak localization effect.Increasing film thickness weakens the weak localization effect,resulting in the disappearance of resistivity upturn.While in LSMO films with a large lattice strain(i.e.,LSMO/LAO),an unexpected semiconductor behavior is observed due to the linear defects.For magnetotransport properties,an anomalous in-plane magnetoresistance peak(pMR)occurs at low temperatures in LSMO films with small lattice strain,which is caused by two-dimensional electron gas(2DEG).Increasing film thickness suppresses the 2DEG,which weakens the pMR.Besides,it is found that the film orientation has no influence on the formation of 2DEG.While in LSMO/LAO films,the 2DEG cannot form due to the existence of linear defects.This work can provide an efficient way to regulate the film transport properties.
Zhi-Bin LingQing-Ye ZhangCheng-Peng YangXiao-Tian LiWen-Shuang LiangYi-Qian WangHuai-Wen YangJi-Rong Sun