搜索到43348篇“ MISSION“的相关文章
中共早期特派制度、特派巡行制度和巡视制度关系辨析
2024年
特派制度、特派巡行制度和巡视制度是中共早期在不同历史阶段形成的三种主要的党内监督制度。长期以来,学术界认为特派制度就是巡视制度,特派员等同于巡视员,反之亦然;对于特派巡行制度则简单地认为是由特派制度向巡视制度转变的过渡性制度。本文通过梳理特派制度、特派巡行制度和巡视制度三者形成的原因与背景,辨析其中的区别与联系,以厘清学术界对此问题的模糊认识。
贺宝玉张莉梅
关键词:中国共产党
基于多层级使命任务线程的总体任务成功性评估
2024年
针对当前装备体系(system of systems,SoS)任务建模研究深入程度不足问题,提出装备SoS使命任务的概念模型和描述模型,在此基础上,首先对各层级任务的任务线程进行分析与规划,改进传统Petri网,提出一种基于层次确定与随机Petri网(hierarchical deterministic and stochastic Petri nets,HDSPN)的装备SoS任务线程建模方法,构建面向多层级使命任务的装备SoS任务线程模型。然后,结合基于可达性分析算法(reachability analysis algorithm,RAA)的装备SoS总体任务成功性仿真评估算法,启动仿真模型运行,实现对装备SoS总体任务成功性的有效评估,并通过案例分析,验证了模型的适用性。
丛林虎陈宇奇陈黎明陈育良王朝
无人集群智能任务规划方法研究综述
2024年
随着作战场景的多样化发展,现代战争形态正由机械化、信息化向智能化方向加速转变,智能任务规划逐渐取代传统任务规划成为无人集群作战的大脑,是集群有效遂行作战任务、提升作战效能的核心环节。针对任务规划内涵和无人集群作战特点,系统梳理了无人集群智能任务分配方法、智能轨迹规划方法以及智能效能评估方法研究现状,最后结合任务规划需要重点解决的难题,给出了未来集群智能任务规划方法的发展展望。综述表明,智能任务规划方法是提升无人集群任务效能的重要因素,需重点关注不确定环境、大规模集群编组、多任务一体寻优快速迭代以及智能任务分配、智能轨迹规划解耦等难题,进一步提升无人集群任务规划方法智能化水平。
郭斐然张旭辉路鹰晁鲁静
基于使命工程的体系试验数字化设计方法
2024年
针对体系试验如何从作战使命需求出发加强实战化考核,实现数字化试验转型的问题,提出一种基于使命工程的体系试验数字化设计方法。应用使命工程方法规划体系试验使命任务、作战活动和装备系统等不同层级度量指标,引入体系建模的架构方法和体系试验使命架构,构建包含作战、能力和装备等多个视角的体系试验数字化设计模型体系,实现体系试验使命任务与指标体系的关联融合。以某一体化联合检验任务的数字化设计为应用案例,验证该方法的有效性。
董光玲黄彦昌史睿冰魏茂洲杨媚
基于任务效能评价张量进化的航天器任务规划
2024年
航天器在空间探索时需要面对各种多任务场景,复杂的任务耦合关系和航天器轨迹约束给任务规划带来困难。本文提出了基于任务效能评价张量进化的航天器任务规划方法,利用张量形式来描述任务规划中任务点间转移轨迹与前序任务集的耦合关系,精确地评价不同任务规划方案下的转移轨迹代价和任务收益,从而有效地提高了任务规划效能,并极大缩减了任务规划的计算量。
姚蔚然田昊宇张欧阳吴立刚
关键词:迭代优化
“Einstein Probe”Mission Holds New Promise in Time-domain Astronomy
2024年
Einstein Probe,an astronomical satellite designed for X-ray observation on astronomical events drastically evolving over time,was successfully sent into preset orbit by a Long March 2C rocket from China’s Xichang Satellite Launch Center located in Sichuan Province at 15:03 GMT+8 on January 9,2024.
SONG Jianlan
关键词:PROBEPROMISEMISSION
基于多种群混沌遗传算法的GEO目标服务任务规划
2024年
面向地球同步轨道(geosynchronous Earth orbit,GEO)空间目标碎片清除、燃料加注等不同在轨服务需求,研究了“固定储油站+往返航天器”相结合的航天器任务规划问题。首先,建立了多任务混合的燃料最优双层任务规划模型,外层为目标服务序列规划,内层为轨道机动规划。随后,针对该连续-离散混合变量组合优化问题,提出了一种多种群混沌遗传算法(multi-group chaotic genetic algorithm,MGCGA),采用混合编码表征决策变量,引入立方混沌映射算子提高初始种群质量,多种群及精英保留策略使得算法在求解过程中能更为显著地逼近全局最优解。最后,参考实际GEO目标构建了典型算例,规划结果表明所提算法具有全局收敛性好、收敛速度快的优点。
尹帅余建慧宋斌郭延宁李传江吕跃勇
关键词:在轨服务多任务
SEAD场景异构无人机配置与任务规划联合优化方法
2024年
对敌防空压制(suppression of enemy air defenses, SEAD)场景是多无人机协同的典型应用,针对该场景特点,在任务规划问题基础上将各类型无人机数量也作为决策变量,充分表征目标、任务和无人机的多种约束,建立异构无人机编队路径问题模型。设计了双层联合优化方法求解该模型:上层设计了任务衔接参数指标,精确评估各类型无人机需求,指导无人机配置调整;下层设计了改进遗传算法,高效处理多类型约束并能结合无人机数量变化对任务方案进行精细调整;双层相互协调获得满足需求的无人机配置和执行方案。仿真结果表明,该方法可以在避免遍历无人机配置组合的前提下获得合理的无人机配置方案和高效可行的执行方案。
王建峰贾高伟辛宏博郭正侯中喜
Fast solution to the free return orbit's reachable domain of the manned lunar mission by deep neural network
2024年
It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.
YANG LuyiLI HaiyangZHANG JinZHU Yuehe
Efficiency-first spraying mission arrangement optimization with multiple UAVs in heterogeneous farmland with varying pesticide requirements
2024年
Combining multiple crop protection Unmanned Aerial Vehicles(UAVs)as a team for a scheduled spraying mission over farmland now is a common way to significantly increase efficiency.However,given some issues such as different configurations,irregular borders,and especially varying pesticide requirements,it is more important and more complex than other multi-Agent Systems(MASs)in common use.In this work,we focus on the mission arrangement of UAVs,which is the foundation of other high-level cooperations,systematically propose Efficiency-first Spraying Mission Arrangement Problem(ESMAP),and try to construct a united problem framework for the mission arrangement of crop protection UAVs.Besides,to characterise the differences in sub-areas,the varying pesticide requirement per unit is well considered based on Normalized Difference Vegetation Index(NDVI).Firstly,the mathematical model of multiple crop-protection UAVs is established and ESMAP is defined.Furthermore,an acquisition method of a farmland’s NDVI map is proposed,and the calculation method of pesticide volume based on NDVI is discussed.Secondly,an improved Genetic Algorithm(GA)is proposed to solve ESMAP,and a comparable combination algorithm is introduced.Numerical simulations for algorithm analysis are carried out within MATLAB,and it is determined that the proposed GA is more efficient and accurate than the latter.Finally,a mission arrangement tested with three UAVs was carried out to validate the effectiveness of the proposed GA in spraying operation.Test results illustrated that it performed well,which took only 90.6%of the operation time taken by the combination algorithm.
Yang LiYanqiang WuXinyu XueXuemei LiuYang XuXinghua Liu

相关作者

余晓芬
作品数:206被引量:489H指数:11
供职机构:合肥工业大学
研究主题:微透镜阵列 压电陶瓷驱动器 微动工作台 大行程 测量系统
李蓉
作品数:7被引量:14H指数:2
供职机构:浙江师范大学教师教育学院
研究主题:儿童 MISSION 家校合作 SCHOOL HILL
赵丽丽
作品数:5被引量:11H指数:2
供职机构:东北石油大学电气信息工程学院
研究主题:STM32 MISSION 无人机 PLANNER FI
张华
作品数:45被引量:374H指数:11
供职机构:中国科学院烟台海岸带研究所
研究主题:土壤 渤海海峡 人工鱼礁 锑 TRMM
卞强
作品数:4被引量:14H指数:3
供职机构:东北石油大学电气信息工程学院
研究主题:STM32 液晶显示 MISSION 避障 加湿器