White light emitting systems of pure organic materials have attracted extensive research interest due to their better compatibility and functional scalability.The reported organic white light materials are mainly based on the multi-channel emission regulation of the compound itself or the mixing of multicolor luminescence materials,but studies on the dependence between multicolor luminescence and the external environment are lacking,which limits the application of these materials in areas such as identification and sensing.This paper reports that the 4-or 3?hydroxyl-substituted naphthalimides NapH1 and NapH2 form intermolecular hydrogen bonds with adjacent molecules in the environment,and undergo excited-state intermolecular proton transfer under irradiation,resulting in blue-yellow or blue-red dual fluorescence emission,respectively.Since the two compounds have different two-color luminescence channels and the two-color intensity ratio is affected by the environment,and the intermolecular hydrogen bond is determined by the hydrogen bond receptor,polarity,and temperature in the environment,the full spectrum from blue to red light and white light emission can be obtained by adjusting the mixing ratio of the two dyes and the solvent polarity and the ambient temperature.This environmentally sensitive white emission is used to detect the alkalinity of different papers,and the dyed paper can be used as a test strip for acid-base vapor detection.
Jin LiQinglong QiaoNing XuWei ZhouJingli YuanZhaochao Xu
Membrane permeability and intracellular diffusion of fluorescent probes determine staining selectivity of intracellular substructures.However,the relationship between the molecular structure of fluorescent probes and their membrane permeability and intracellular distribution is poorly understood.In this paper,we reported a series of 1,8-naphthalimide dyes and carried out cell imaging experiments,and found that the presence of amino hydrogen in these dyes played a crucial role in their cell membrane permeability and intracellular distribution.The secondary amino group containing compounds 1-4 show excellent membrane permeability and strong fluorescence in living cells.While the tertiary amine containing dyes 5 and 6 can hardly permeate the cell membrane though they show extremely similar structure with compounds 2-4.Compound 1 can selectively image lipid droplets by selecting the wavelength of excitation light.With the specificity for lysosomes,2 and 4 have been used in long-term time-lapses imaging of lysosomal dynamics and tracking the process of lysosome-lysosome interaction,fusion and movement.The effect of hydrogen-containing amino substituent on the cell membrane permeability of fluorescent molecules is promising for the development of better biocompatible probes.
Naphthalimide methylcyclohexane(NMICY)luminogen that features molecular conformation-directed aggregation-induced emission was prepared,and its pure equatorial conformer was isolated and wellcharacterized via various techniques,including single-crystal X-ray diffraction(SC-XRD)analysis.In NMICY,the methyl cyclohexane substituent adapted the most stable chair conformation,preventing intermolecularπ-πinteractions among the naphthalimide cores.Careful analysis of the self-assembly behavior indicated that an uncommon J^(*)-aggregation pattern was predominant for NMICY that exhibited∼450 nm emission in crystal as well as in the aggregated state[λmax=455 nm,фPL=23.22%,fw=99.9%in water or water-dimethylformamide mixture].NMICY self-assembled into cube-shaped 2D-nanoarchitecture as characterized by fieldemission scanning electron microscopy,atomic force microscopy,and dynamic light scattering(Zavg=143 nm,∼20 nm height)studies while also displaying unique optical properties in the aggregated state.The supramolecular self-assembly and aggregated state structure-property relationship in aqueous media of NMICY were optimized,and a facile strategy for the detection of melamine in milk and an aqueous solution of milk powder is reported with a limit of detection value of 0.184 ppm(milk)and 0.101 ppm(milk powder),achieved via the rare acceptor-excited photoinduced electron transfer mechanism.Furthermore,a smartphone-based,portable,and uncomplicated sensing platform was developed that simplifies the melamine detection process.
为了提高有机太阳能电池(Organic solar cells, OSCs)给体材料的光吸收效率,本文设计了系列以噻吩异靛蓝分子片段为中心,不同芳香杂环为π-桥,1,8-萘酰二胺(1,8-Naphthalimide, NI)分子片段为端基的新型π-共轭化合物作为有机太阳能电池给体材料.利用量子化学中的密度泛函理论和含时密度泛函理论方法,对所设计的化合物的光学和电子性质进行了研究,探究分子结构与光谱和电子性质之间的联系.计算结果表明,通过在母体化合物中引入不同的π-桥,可以有效调节所设计分子的前线分子轨道能级、能隙和光谱性质.但是,其对设计分子的几何结构影响不大.设计的化合物分子均具有窄的能隙,在可见光和近红外光谱(NIR)区都有强吸收,这有利于提高有机太阳能电池光吸收效率.前线分子轨道能级分析发现,部分设计的化合物能级与典型富勒烯受体材料相匹配,可选用传统PCBM,bisPCBM和PC_(71)BM作为受体材料,另一部分设计化合物,则应考虑选用其他的太阳能电池受体材料.研究结果表明,本文所设计的化合物可作为具有红光或NIR区有强吸收的高效太阳能电池给体材料应用于太阳能电池中.本研究为开发和合成新型高效有机太阳能给体材料提供理论依据.