介绍了基于XI LI NX FPGA的1Gb/s光OFDM(O-OFDM)发送端信号处理的整体设计,对传输信号的星座映射及FFT进行了研究,重点分析了不同量化比特数时IFFT/FFT的误差矢量幅度(EVM),提出了使用不同量化比特对信号进行适当放大而提高系统的IFFT-FFT转换精度的方法。实验验证了OFDM信号I FFT-FFT变换后随量化比特数的增加,EVM值不断减少,相应的星座图更收敛。
Turbo-coded 1.25-Gb/s orthogonal frequency-division multiplexing (OFDM) signals in 60-GHz radio-over-fiber system are demonstrated.It can overcome impairments in fibers and extend transmission distance.Experimental results show that the transmission distance of turbo-coded OFDM signals at 1.25 Gb/s with coding (pure bit rate of 830 Mb/s) can be extended by over 30%.
We experimentally investigate the transmission performance of 60-GHz signals over standard single-mode fiber (SSMF) and wireless links at different bit rates. Experimental results show that in a transmission of over 10-km SSMF and 1.3-m wireless link, bit rate reaches up to 5 Gb/s and bit error rate (BER) is less than 10-4 . The main limiting factor in such radio-over-fiber (ROF) systems is intersymbol interferences caused by the so-called walk-off effect when BER is below 10 8 . In addition, a transmission of over 20-km SSMF without chromatic dispersion compensation is briefly investigated. For a BER of 10 8 , the optical penalty is 2 dB.