<正>设G是对称群S_m的子群.记CG是所有函数f:G→C的集合.称f是半正定的,如果存在c∈CG,使得对任意的r∈G有f(r)=sum from σ∈G (c(στ)c(σ)特别地,G的不可约特征标是半正定的.记C_n×m为n×m复矩阵集.对于f∈CG,广义矩阵函数d_f:C_m×m→C定义为d_f(A)=sum from σ∈G (f(σ))multipy fromu=l to a_iσ(i),其中A=(a_i,)∈C_m×m 设 1≤ m≤n,f∈CG,A∈C_n×n.如果f是非零的和半正定的,则定义A的f可合数值域为集合W_f(A)=|d_f(X~*AX)|X∈C_n×m,d_f(X~*X)=1|当m=1且f=1时,W_f(A)即是A的经典数值域外W(A)=|x~*Ax|x∈C_n×1,x~*x=1|.f-可合数值域相关于张量对称类的可合元素.设c∈CG对任意的,τ∈G满足(1)式记V为带有标准内积的向量空间C_n×1.则张量空间(?)V是酉空间,其诱导内积满足(x(?),
Necessary and sufficient conditions for homogeneous polynomial functions of n variables of degree m with m odd, m=2 or m=4 to be Schur-concave on Rn are given.