依据粉末冶金Ti-47Al-2Nb-2Cr合金热模拟压缩实验结果,研究了变形温度为950~1150 ℃、应变速率为0.001~0.1 s(-1)条件下材料的流变力学行为。采用Poliak和Jonas所提出的临界条件动力学理论,确定了该合金的动态再结晶临界应变(ε_c)和临界应力(σ_c),揭示了变形温度与应变速率对ε_c和σ_c的影响规律。结果表明,温度补偿应变速率因子Z与ε_c、σ_c、ε_p(峰值应变)和σ_p(峰值应力)间的关系可以采用指数函数形式表征。建立了该合金动态再结晶临界发生模型:ε_c=1.2×10^(-3)Z^(0.147),动态再结晶临界应变与流变应力曲线峰值应变的比值约为 0.73。根据对模型的分析表明,临界应变与 Z 参数之间呈现正相关性,即随着 Z 参数的减小(变形温度升高或应变速率降低),材料发生动态再结晶的临界应变减小,说明变形温度的升高与应变速率的下降能够促进动态再结晶行为的发生。通过对热变形后微观组织的观察,验证了所建立动态再结晶临界模型的可靠性。
The flow behavior and dynamic recrystallization(DRX) behavior of an as-cast AZ91 D alloy were investigated systematically by applying the isothermal compression tests in temperature range of 220-380 ℃ and strain rate range of 0.001-1 s^-1.The effect of temperature and strain rate on the DRX behavior was discussed.The results indicate that the nucleation and growth of dynamic recrystallized grains easily occur at higher temperatures and lower strain rates.To evaluate the evolution of dynamic recrystallization,the DRX kinetics model was proposed based on the experimental data of true stress-true strain curves.It was revealed that the volume fraction of dynamic recrystallized grains increased with increasing strain in terms of S-curves.A good agreement between the proposed DRX kinetics model and microstructure observation results validates the accuracy of DRX kinetics model for AZ91 D alloy.
The process of repetitive upsetting-extrusion (RUE) was used to achieve severe plastic deformation (SPD) for an as-cast AZ61 magnesium alloy in temperature range of 285-380 ℃. The microstructure and mechanical properties of the as-cast and RUE processed AZ61 alloys were investigated. The results indicated that homogeneous fine-grained structure with mean grain size of 3.5 μm was obtained as the accumulated true strain in the axial direction increased to 4.28 after three RUE passes at 285 ℃. The dominant reason of grain refinement was considered the dynamic recrystallization induced by strain localization. It was also found that the microstructural evolution was affected by temperature and accumulated deformation. The mechanical properties of RUE processed AZ61 alloys were significantly improved owing to grain refinement. Furthermore, the relationship between deformation parameters and mechanical properties of AZ61 alloy prepared by RUE processing was revealed by tensile tests carried out at room temperature.